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An N-component continuous-time dynamic system is considered whose components evolve 
independently all the ttme except for drscrete asynchronous instances of pairwrse Interactions. 

Examplcs include colliding billiard balls and combat models. A new etlicient serial cvent- 

driven algorithm is described for simulating such systems. Rather than maintaining and 

updatmg the global state of the system, the algortthm tries to examine only essential events, 
i.e., component interactions. The events are processed in a non-decreasmg order of time; new 

interactions are scheduled on the basis of the examined interactions using preintegrated equa- 
tions of evolutions of the components, If the components are distributed uniformly enough in 

the evolution space, so that this space can be subdivided into small sectors such that only 

0( 1) sectors and 0( 1) components are in the neighborhood of a sector, then the algorithm 
spends time U(log N) for processing an event whtch is the asymptotic minimum. The aigo- 

rithm uses a simple strategy for handling data: only two states are maintained for each 
simulated component. Fast data access in this strategy assures the practical efficiency of the 

algorithm. It works noticeably faster than other algorithms proposed for this model. 1, 1991 

Acadcrmc Prra>, lrv. 

1. INTRODUCTION 

Many continuous time dynamic systems can be accurately approximated by 
models whose components evolve independently all the time except for discrete 
asynchronous instances of pairwise interactions. A typical example is a set of 
chaotically colliding billiard balls. Each ball moves along a straight line until it 
collides with another ball or an immobile obstacle. Only pairwise ball collisions are 
considered, since the probability is zero that more than two balls are involved in 
the same collision. 

Such “billiard” or “hard sphere” models have been in use among computational 
physicists since the pioneering work [ 11. Recently these models have attracted the 
attention of simulationists [4]. The task of simulation of such a model is the 
reconstruction of the history of each component. Many models, even as far from 
billiards as models of combat [ 111, are conceptually similar to billiards. The 
similarity is in the techniques for handling spatial combinatorics of multitude of 
asynchronous pairwise interactions. Processing an interaction (two-ball collision) 
or an autonomous evolution of a component (moving a billiard ball along a 
straight line) depends on the specific model in hand. 
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Most recent attention has been drawn to speeding up billiard-type simulations 
[4, S] on parallel computers. However, it is still not obvious how to write such 
simulations which are efficient in practice on a common serial computer. A “naive” 
serial algorithm advances the global state of the billiards from collision to collision. 
The states of all N balls are examined and updated at times f, < t, < 2, < . . . . where 

t, is the initialization time and fi+, is the nearest next collision time seen at time 
t,. The naive scheme is inefficient for large N because 

(a) the same collision is repeatedly scheduled an order of N times until it 
occurs, 

(b) at a typical cycle, most balls are not participating in collisions; still, they 
are examined by the algorithm. 

Aside from problems (a) and (b), there exists problem (c) of finding an inexpen- 
sive method of determining the nearest collision for a chosen ball. A straightforward 
method is to compare the chosen ball with N - 1 others. The standard improve- 
ment in this method is the division of the pool table into an order of N sectors. 
Only balls in the neighboring sectors have to be checked to determine the 

immediate collision which reduces the work from O(N) to 0( 1) per one collision 
scheduled. 

A natural idea for improvement in (a) and (b) is to postpone examining and 
updating the state of a ball until its collision. Implementing this idea does not 
appear as easy as it might seem. As the simlation progresses, a scheduled collision 

of a given ball may require rescheduling. The need for such rescheduling and the 
desire not to lose information about already planned collisions led in [ 1 ] to a com- 
plicated data structure and update scheme called “time-table” in [3]. Observe that, 
with all its inefficiency, the naive scheme has an attractively simple double-buffering 

data structure. The structure consists of only two copies of the global state vector, 
the old and the new, so that the new vector is computed on the basis of the old one 
and, in turn, becomes the old one during the next cycle. 

We propose a new serial algorithm for simulations like billiards. The attraction 

of this algorithm is that it utilizes a simple and easy to hand double-buffering data 
structure, while avoiding problems (a) and (b). Problem (c) is handled in our algo- 
rithm using the standard technique of sectoring. In most cases the algorithm 

examines and processes only the events whose processing is unavoidable, e.g., ball 
collisions and boundary crossings. Sometimes, like the naive algorithm, it also 
processes events whose examinining is not necessary. However, the fraction of such 

overhead events is small and does not grow with N, while the speed-up due to 
simplicity of data handling is substantial. The proposed algorithm achieves the 
same theoretical optimal performances as other published algorithms, i.e., O(log N) 
instructions per one porcessed event with sectoring and O(N) without. But its prac- 
tical speed for the billiard case is at least an order of magnitude higher than that 
of other algorithms. (We compare, of course, computer-independent algorithmic 
speeds.) We were able to handle millions of collisions on a non-supercomputer 
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VAX8550 using FORTRAN. Using languages better adapted for the computer 
should result in additional speed-ups.’ The computer handled 2000 balls in most 
experiments (see, e.g., Fig. 9.2 in Section 9). If needed this number could be easily 
increased to 104. 

When writing this algorithm special attention was paid to an often overlooked 
trade-off between the complexity of data organization and the amount of computa- 
tions the algorithm is willing to abandon risking to incur them again. For example, 
to determine the next collision for a ball A we have to try to have it collide with 
any other ball (within its neighborhood, in the presence of sectoring) and then 
choose the collision closest in time, say it is a collision with ball B. However, the 
tentative parner B, in its turn, may choose an even better party C, C# A. As a 
result, later in the computations, A might figure out that the party Bl, which was 
previously rated second to best, is to be considered the best. 

Rating potential candidates costs computations: the algorithm tries to simulate a 
potential collision of ball A with a candidate X in order to rate this X. Should the 
algorithm retain the results of these preliminary simulations which correspond to 
the second, third, . . . . best parties Bl, 82, when the best candidate B is being 
chosen? Or is it more economical to abandon the information obtained during the 
rating and, if later needed, simulate these collisions again? The answer determines 
the data organization strategy which crucially affects algorithm efficiency. In the 
billiard case, a “pack rat” strategy entailing a search through dumped items to find 
the needed one incurs too high a cost. In a general case, the best trade-off depends 
on the relative cost of the basic operations, e.g., the amount of computing needed 
for repeated scheduling versus that needed to retrieve the same data. 

Another scale of strategies and the associated trade-off is that of the “aggressive- 
ness” of precomputation. In a more aggressive strategy, when the next collision for 
ball A is being scheduled, not only the existing states of other balls are taken into 
account but also their possible future states which might result from their as yet 
unprocessed collisions. The degree of aggressiveness might be measured in how 
many future collisions with the other balls are considered ahead. The two scales are 
correlated: a more aggressive precomputation requires a more complicated data 
structure and encourages the choice of a more “pack rat” data handling strategy. 

In the described two trade-off scales, the strategy used in the proposed algorithm 
is close to the “wasteful” and “lazy” ends of the scales, the opposite of the “pack 
rat” and “aggressive” ones. Both the storage of not immediately needed data and 
precomputation lookahead are reduced. The candidates for the next collision for a 

’ In the UNIX environment, which is standard for AT & T computers, C-language is a better choice. 

The author tried to exploit automatic FORTRAN + C translator (named F2C), recently developed in 
AT & T Bell Laboratories. The created C-code worked about 10% faster than the original FORTRAN 

code. If a manually produced C-code was used, one would expect 20-30% speed-up. Profiling the code 

suggests that additional, perhaps, 50% speed-up is achievable by the usual lower level optimization, 

such as the reduction of the number of subroutine calls and indirect array references. These suggestions 

have not been vigorously tried yet, because the code “as is” seems ot be sufftciently fast for the 
considered applications. 
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particular ball which are rated below the winner are abandoned once the winner is 
chosen. The future collision of a ball is predicted based only on the existing states 
of the other balls, not on their future states after possible future collisions. 

For a reader who is not familiar with simulation terminology, it is worth adding 
that the proposed is an event-driven simulation algorithm in which the state of the 
simulated system is examined by the computer only at the times of the events, e.g., 

ball collisions. A physicist may be more familiar with the time-driven simulation 
algorithms. Such algorithms (see, e.g., [S]) are usually employed in the many-body 
problems in which the components, say particles, rather than evolving almost 
always independently, are continuously interacting by exerting short and/or long 
range forces. The two computational approaches are radically different and each 
has its own difficulties. 

A time-driven algorithm would maintain the snapshot of the states of all 
simulated components at a time t and would advance the time from t to t + At by 
modifying all these states. To assure sufficient precision At should be rather small. 
As a result, the time-driven algorithm would be tremendously slower than the 
proposed event-driven algorithm. Event-driven algorithms are the best (and often 
the only practical) choice for models where discrete instantaneous events occur 
asynchronously. In the proposed algorithm, if an event involving ball A is processed 
for simulated time t, only the state of A is examined and explicitly modified. The 
states of most other balls need not be known at t and are not examined by the algo- 
rithm. In fact, the global state is explicitly known at no time t, except t = 0. 
However, if we wish to know the global state, say, if we wish to known the location 
of each ball at a particular time t, then additional computations of “projecting” the 
motions of all balls into time point t are required. 

The rest of the paper is organized as follows: In Sections 2 to 6, a definition of 
the basic operations, the data organization, the formulation of the algorithm with 
examples of its run, and some comments on the experience of its implementation 
are given. These sections should be sufficient for a reader who wishes to understand 
and write a simulation algorithm for a billiard-like system. Sections 7 and 8 intro- 
duce, explain, and analyze the conditions under which this algorithm works 
correctly. Section 9 presents an application example for the algorithm: a disk 
packing problem; Section 10 compares the performance of this algorithm with 
other published proposals, and the Conclusion discusses variants of the billiard 
simulation and other simulation models like billiards, including combat models. 

2. BASIC OPERATIONS 

Assume that a basic function interaction- time is available which, given state 1 of 
component 1 at time1 and state2 of component 2 at time2, computes the time of 
the next potental interaction while ignoring the presence of other system com- 
ponents: 

time + interactionptime (state 1, time 1, state2, time2), (2.1) 
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where time>max(timel, time2). If interaction-time cannot find such finite time, 
e.g., when two billiard balls are moving away from each other, we assume that + cc 
is returned. 

In the billiard simulation, the state of a ball is the pair of vectors state = (posi- 

tion, tAocity). If the velocities of the balls are constant between the collisions, and 
all balls are of the same constant diameter D, then (2.1) is of the form 

time + max(time1, time2) + 2 
where 
f= (-h-JPTG)/a, 

1 

if hdOandh2-ac30 

+ml, if h>Oorb’-ac<O 
and 
a = I uelocity2 - velocity 1 I 2, 
b = (position20 - position 10) . (velocity2 - velocity 1 ), 
c = 1 position 20 - position 101’ - D*, 
position 10 = position 1 + velocity I (max( time 1, time2) - time 1 ), 
position20 = position2 + velocity2 (max(time 1, time2) - time2), 

(2.2) 

where u v denotes the dot product of vectors u and U, and /uI denotes the length 
of vector v: 1~1 = (u .u)‘!l. The expression for t in (2.2) is the least real solution 
f = t _ of the equation at* + 2bt + c = 0 which is derived from / p + ut12 = D2, where 
p = position20 - position 10 and v = velocity2 - velocity 1. The meaning of the latter 
equation and of both its solutions t = t and t = t + is obvious from Fig. 2.1. Note 
that c may be 0 in which case t = tp = 0 and time = max(time 1, time2). This means 
that interaction-time is applied when one ball is already at the site of the scheduled 
collision. 

FIG. 2.1. The geometrical meaning of the two solutions of equation Ip + ~ltl’= D’. 
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Two components 1 and 2 with state1 and state2 are said to be interacting, if 

interaction- time (state 1, time, state2, time) = time (2.3) 

holds for any value of time. For example, billiard balls i and j of diameter D each 
with velocities and positions ui, pi and vi, p,, respectively, are interacting (i.e., 
colliding), if 

lpj-P;l=D, (u,-u~)‘(P~-P,)<~. (2.4) 

Assume that a basic function jump is available which, given state1 and state2 of 
interacting components 1 and 2, computes nenl-state1 and new-state2 of these 
components immediately after the interaction: 

(new-state 1, new-state2) t jump (state 1, state2). (2.5) 

When billiard balls 1 and 2 with vector velocities u,” and uild collide, only their 
velocities experience jumps, not positions. Assuming the energy and momentum are 
conserved, the tangential components of the initial velocities are not changed, but 
the normal components are switched as depicted in Fig. 2.2. The velocities after the 
collision are uyw and uyw. 

A ball bouncing off a boundary of the pool table, in principle, needs not be 
examined by the algorithm. It may be considered as an ordinary point on the 
autonomous interval of the trajectory. For example, given positions (x0, ~0) and 
the velocity vector u of a ball at time t = 0, we can construct functions 
X(v, x0, ~0, t) and Y(u, x0, ~0, t) which would return the position x = X and y = Y 
of the ball at time t without explicitly processing intermediate boundary reflections. 

FIG. 2.2. Change of velocities of two billiard bails at their collision 
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The complexity of computations by functions X( ) and Y( ) would not depend on 
the number of bounces. (This holds at least for a rectangular pool table.) 

In most applications, however, such elaboration would be of little practical use, 

because the ball would usually collide with another ball after at most one boundary 
reflection. Besides, an explicit examination of the reflection event might be needed 
anyway for statistical purposes and for convenience of data update. Thus we will 
treat a reflection from an immobile obstacle as a separate event. 

A boundary crossing may be considered under a periodic boundary condition 
model, wherein a ball, rather than bouncing off, disappears at a boundary and 
reappears at the opposite side (see Fig. 2.3). This may be treated as the same type 
of event as boundary reflection. If the pool table is divided into sectors, a similar 

type of event constitutes a ball moving from one sector to another. Such an event 
should be examined by the algorithm in order to update the membership in the 

sectors. We will treat all such events as one-component interactions. 
We will assume that basic functions with the same names interaction-time and 

jump represent one-component interactions 

time +- interaction- time (state 1, time 1, obstacle) (2.6) 

neM>-state +-jump (state, obstacle), (2.7) 

where obstacle is the identification of a boundary or an immobile obstacle or a 

demarcation line. To apply jump in (2.7) the component, whose state is represented 
in (2.7), must be interacting with obstacle. The condition which defines such one- 
component interaction is 

interclction- time (state 1, time, obstacle) = time (2.8 1 

FIG. 2.3 A ball is disappearing at a boundary and reappearing at another side 
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holds for any time. This is similar to (2.3). Capital K will be reserved for the num- 
ber of obstacles so that obstacle in (2.6), (2.7), and (2.8) is an integer in the interval 
from 1 to K. The one-component versions of functions interaction-time and jump 
will be easily distinguished by context from their two-component synonyms in (2.1) 
and (2.5). 

We also assume the availability of a basic function advance which, given state0 
of a component at time0 and a value time1 2 time0, returns state1 this component 
would have at time1 ignoring possible interactions with other components or 
obstacles on the interval [timeO, timel]: 

state 1 t advance (state0, time0, time 1). (2.9) 

In a frictionless billiard, (2.9) is of the form 

position 1 +- position0 + (time 1 - time0) velocity0 (2.10) 

velocity 1 c velocity 0 

which simply says that the ball moves with velocity0 along a straight line starting 
from position0 at time0. 

Note that in particular cases, specific calculations for interaction- time, advance, 
and jump may be not as simple as in the billiard case. The assumption that they 
are basic saves us from the burden to detail them in the general discussion. 

3. DATA ORGANIZATION 

The basic data unit of the algorithm is called event and has the format 

event = (time, state, partner), (3.1) 

where time is the time to which state of a component corresponds. Note that state 
is the new state of the component immediately after the event, e.g., if a ball has 
experienced a collision at time, the velocity-coordinate of the state is the new 
velocity vector after the collision; partner identifies the other component, if any, 
involved in the event. If there is no partner in the event, the program assigns a 
special “no-value” symbol A to the partner coordinate. If time = + m, then the 
other two coordinates in the event have no value; i.e., state = purtner = A. 

At any stage of simulation, the algorithm maintains two events for each compo- 
nent: an old, already processed in the past event and a new, next scheduled event. 
This information is stored in array event [ 1 :A’, 1 :2], where N is the number of 
components of the simulated system. Let us agree to understand a reference like 
time [3, 1 ] as the time coordinate of element event [3, l] of this array. 

Two arrays, new [ 1: N] and old[ 1 : N], with elements equal to 1 or 2 are main- 
tained. For component i, new [i] is the pointer to the new event and old [i] is the 
pointer to the old event. Thus the new event for component i is stored at 
event [i, new[i]] and the old event is stored at event [i, old[i]]. When new [i] is 
updated, oZd[i] is updated immediately afterward, so that the relation 
new [i J + oId[i] = 3 remains invariant. 
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4. THE ALGORITHM 

In the algorithm pseudocode in Fig. 4.1, /” and “/ mark the beginning and the 
end of a comment, the minimum over an empty set of values is assumed to be + W. 
The following short-hand notations are used: 

p,, f! 

~~t~~action-time(state[i,old[i]],time[i,old[i]],srate[j,old[j]], time[,j,o/d[j]]), 

initially r,ur-rent-time t 0 and for i = I ,2,...N : 

nek,[i] t I, o/d[i] t 2, time[i,l] t 0. purtner[i,l] t A, 

Uate[i. I] t initial state of component i, e\,ent[i,2] t evenf[i, 11 

I. while cur-wnt_time < end-time do { 

2. 

3. 
4. 

5. 

6. 

7. 

x. 
9. 
IO. 
I I. 

12. 
13. 

14. 
15. 
16. 

17. 
IX. 
IV. 

20. 

current time t ,giiNtime [i. nen,[i]] : 

i. t an index which supplies this minimum (i.e., current--time) : 

flf+i~[iv ] t o/d[i*] ; old[i*] t 3-nebc[i=] : 

P t min P,,, , where A(;*) = {,j 1 ISjSN, j#i,, rime[j,netix[j]] I 
, t A(l., 

if P < +co then ,j* t an index which supplies this minimum (i.e., P) : 
Q t minQ,,L . where B = {k j 1 IX <K} ; 

itH 

if Q < +ca then k* t an index which supplies this minimum (i.e., Q) 
R t min{P. Q} ; time[L, new,[i*]] t R ; 

if R < +co then { 

sfotcl t uci\vncl~ (.rtute[i-, dci[i-I]. rime[j>, dd[i*]], R) ; 
if Q < P then { 

sfute [i*, new[i+]] t jftmp (statel, k,); 

partner [i - , nerz,[i*]] t A : 

} /” end Q < P close “/ 
else { /” case Q t P “/ 

time1 j-, neM.1 ,j- ] ] t R : 
stute2 t udrunce (state [ j* , o/d[j+l], time[j*, o/d[j*]], R): 
(.stute Ii*, nm’ [ i * ] 1 . stute [ j x . new[ja]]) t jump (srurel, stufe2) 

mF t partner- [,j-, nebv[j, ]] : 

partner [ ii* , nw[iv]] t ,j* ;purtner [j,, neK,[j*]] t i* ; 

if m- # A and nr -i # i * then { /” update third party nr i “/ 
state [ m -* , neM’[ m, ]] t 

udwnc~e (.Wte[m*, o/d[m*]], time[m-, o/d[m*]]. time[mx. I 

purtner [ m x , newv[m-]] t A ; 

} /” end update third party “/ 
} /” end Q 2 P close “1 

} /” end R < +W close “/ 
} /” end while loop “/ 

FIG. 4.1. The simulation algorithm. 
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where 1 6 i, j d N and 

QIk zf interaction-time(state[i, old[i]], time[i, old[i]], k), 

where l<i<Nand l<k<K. 
The main cycle in Fig. 4.1 consists essentially of two steps: 

(1) selecting the next component i, to process its event (line 2), 

(2) processing the event (the rest of the cycle). 

Processing the event means scheduling next events for the chosen component and 
the other involved components, if any. P and Q are the nearest next interaction 
times. There are two main cases in such scheduling depending on the type of the 
future event: 

(a) Q <P, when the scheduled interaction involves only one component i, 
(lines 8, 10, and 11); 

(b) Q >, P, when the scheduled interaction involves i,, a second party ,j, 
(lines 8 and 13-l 7), and may involve a third party m *, the previous partner, if any, 
of j, (lines 19 and 20). 

Section 5 further explains this algorithmic structure in examples. Now we discuss 
the aspects of the algorithm which are not represented in the aggregated 
pseudocode in Fig. 4.1, namely the way minimizations in lines 2, 4, and 5 are 
implemented. Since these techniques are well known (see, e.g., [6]), their discussion 
will be brief. 

A straightforward method to find the minimum of 

time [i, new [i] ] 

for i ranging from 1 to N in line 2 requires O(N) operations per event. To reduce 
the cost, the algorithm instead organizes values 

time [i, new [i] ] 

into an implicit heap structure. Two pointer arrays pht [ 1 : N] and pth [ 1 : N] are 
maintained so that 

time [ pht [ml, new [ pht [ml]] 

is the value which is implicitly located at the m th position of the imaginary heap 
array and pth is the inverse map for pht, i.e., pht, i.e., 

pth[pht[m]]=m 

for all m. In particular, 
time[pht[l], new[pht[l]]] 

corresponds to the heap tree root, i.e., the minimum value, so that line 2 can be 
simply rewritten as 

i, 6 phtC11, current-time+ time[i,, new[i*]]. 

This method requires updating the heap structure (arrays pht and prh) each time 
a value of 

time [i, new [i] ] 
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is changed in other sections of the algorithm. Including this updating, the total cost 
of finding the minimum next event time is O(log N) operations per one event. 

The main difficulty in the direct method for minimization in lines 4 and 5 is the 
need to compute the N- 1 values P,ej in line 4 and the K values Qlqk in line 5. The 
opportunity to decrease the O(N + K) complexity burden of these computations 
depends on the topology of the evolution space and the uniformity of the compo- 
nent and obstacle distribution in this space. In the billiard case, the space is just the 

Euclidean plane and there is an independent of N maximum number of balls which 

can be located in a bounded vicinity of a given ball. To exploit this boundedness, 
the simulation space is divided into sectors and only the components or obstacles 
incident to the neighboring sectors are examined. The sector boundaries naturally 
become additional “obstacles” in this method and examining boundary crossings 
constitutes the method’s overhead. The complexity in this method reduces to 0( 1). 

Among the available grids used for planar sectorization, the grid of equal squares 
is the most convenient. (The ratio of the area to the perimeter of a sector is larger 
for the hexagonal grid, though.) Specifically in the case of equal balls, we usually 
choose square sides larger than the ball diameter, and for each square we maintain 
the membership linked-list of bails whose centers project to this square. When a 

square boundary crossing is processed the two lists are updated. Only those P,sj 
are computed for which the center of ball ,j belongs to one of the nine sectors 
neighboring the one whose member is i,. This small number of P,*, are subject to 
minimization in line 4. 

5. COMPUTATIONAL EXAMPLES 

Two examples of the execution of the algorithm in Fig. 4.1 are reproduced in 
Figs. 5.2 and 5.3. Both simulate four-ball billiards on a square pool table. Unlike 

real billiards with hard wall boundaries, periodic boundary conditions are assumed 
(these conditions are explained in Section 2, see Fig. 2.3). In the example shown in 
Fig. 5.2, the table is subdivided into 3 x 3 equal square sectors. Figure 5.2 consists 

of three frames, 5.2a, 5.2b, and 5.2~. Each frame shows a snapshot of the simulation 
state at a particular current- time with the identification, position, and velocity vec- 
tor of each ball at this time. Since the execution state usually does not contain the 
positions of all the balls at the same current- time, a picture-producing routine (not 
considered in this discussion) accepts t = currerzt-time as an input and interpolates 
between the old and the new positions of the ball as shown in Fig. 5.1. Note that 
while Fig. 5.1 shows a “general” case, with time [i, old[i]] < t < time [i, new [i]], 
the snapshots in Fig. 5.2 and 5.3 have many “degenerated” cases, e.g., 
time [i, o/d [i]] = t. Also note that to simplify the pictures, times are rounded off to 

their integer parts while the computer manipulates them with the machine precision 
for representing real numbers. 

Figure 5.2a shows the positions and velocities of the four balls at 
current- time = 0. These quantities are the initial values. Observe that no two balls 
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position at time t (the circle center) 

FIG. 5.1. Ball 3 at time currenr-time = t (a legend for Fig. 5.2 and 5.3). 

overlap. (A method to define such initial positions is discussed in Section 9. Correct 
simulation should preserve this property.) As the initialization statement in Fig. 4.1, 
reads, the balls are initialized at the same zero time with identical old and new 
events. Succeeding the test in line 1, Fig. 4.1 (assuming end- time is sufficiently 
large), the algorithm is searching for a ball index i, which yields the minimum to 
time [i, new [i]]. As Fig. 5.2a indicates, the algorithm has chosen ball 1. Observe 
that in the beginning of simulation, all four new events have the same time so the 
other three choices are correct. After switching the senses of old and lzew event 
storages for ball 1 in line 3 (here a redundant manipulation), in line 4 the algorithm 
tries to select the ball with which ball 1 will collide first. Since time [i, new [i]] = 0 
for all i and all P,i> 0, no j satisfies time[.j, new[j]] b P,*,. This means that 
the set subject to minimization in line 4 is empty. Hence, P = + cc, and no j, is 
selected. In line 5 the algorithm selects the boundary k, which will be reached by 
ball 1 first. This boundary happens to be the lower side of the sector to which posi- 
tion [l, o/d[l]] belongs and the ball reaches it (in the absence of other balls) at 
time Q = 58. In line 6, R and time [ 1, new [ 1 ]] are becoming this time. Tests in line 
7 and 9 are succeeding and the rest of cycle 1 is spent on assigning the scheduled 
values in lines 8, 10, and 11 to the new coordinates. These new values will come into 

FIG. 5.2. (a) Result of cycle 1; current-time = 0; ball 1 has scheduled a boundary crossing for time 

58. (b) Result of cycles 2, 3, and 4; current-time = 0; ball 2 has scheduled a boundary crossings for time 

124; ball 3 has scheduled a boundary crossing for time 150; ball 4 has scheduled a collision with ball 

1 for time 25. (c) Result of cycles 5 and 6; currenl-time = 25; balls 1 and 4 have processed a collision 
for time 25; ball 1 has scheduled a boundary crossing for time 94; balls 2 and 4 have scheduled a colli- 

sion for time 87. 

FIG. 5.3. (a) Result of cycles 1 to 4; current-time = 0; balls 1 and 4 have scheduled a collision for 

time 25; balls 2 and 3 have scheduled a collision for time 388. (b) Result of cycle 5; current-time = 25; 

ball 1 has processed its collision with ball 4 for time 25; balls I and 2 have scheduled a collision for time 

226; ball 2 canceled an earlier scheduled collision with ball 3 for later time 388 and this collision is 

turned into an advancement for ball 3. (c) Result of cycle 6; current-time = 25; ball 4 has processed 

its collision with ball 1 at time 25; balls 2 and 4 have scheduled a collision for time 87; ball 2 has 

canceled an earlier scheduled collision with ball 1 for later time 226 and this collision is turned into an 

advancement for ball 1. 
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effect immediately after crossing the specified boundary. Note that if obstacle is a 
demarcation boundary between sectors, then jump is defined as an identical func- 
tion: jump (state, obstacle) c’state. The algorithm then takes the snapshot of the 
situation (see Fig. 5.2a), after which cycle 2 is started. In the snapshot, ball 1 has 
a scheduled event at time 58, while the other three balls still have scheduled events 
at time 0 as indicated. 

Cycles 2, 3, and 4 are spent scheduling future events with positive times for the 
remaining three balls. Update initiators i, are chosen in the following order: ball 2 
becomes i, at cycle 2, ball 4 becomes i, at cycle 3, and ball 3 becomes i, at cycle 4. 
Figure 5.2b shows the progress made in this scheduling.2 While current-time is still 
at 0 because no event with positive time has yet been processed, balls 2 and 3 have 
scheduled boundary crossings (case Q < P) and ball 4 has scheduled a collision at 
time 25 with ball 1 (case Q > P). When a scheduled collision is indicated on a 
picture, not only its time is given but also (in parentheses) the partner index. 
Thus, (4) 25 at the new position of ball 1 means that (the center of) ball 1 reaches 
this position at time 25 and when it does so, it collides with ball 4. (The dashed line 
which is supposed to indicate the future motion of ball 4 is overstricken by the 
arrow indicating the velocity.) 

The algorithm schedules the collision of balls 1 and 4 at cycle 3 when balls 1 and 
2 have already scheduled their next events, boundary crossings at times 58 and 124, 
respectively, but ball 3 has not been touched by the algorithm yet. This scheduling 
proceeds as follows. First (line 4) ball i, = 4 finds out that the only P,, which is not 
larger than time [j, ne~y [j]] is P,, = 25 and P becomes 25. Then (line 5), it is deter- 
mined that the nearest boundary crossing occurs at time Q. The smallest of the two, 
P and Q, becomes R and also time [4, new [4]] in line 6. Since R is finite and Q 
is larger than P, the test in line 7 succeeds but the test in line 9 fails. As a result, 
the sequence of statements in lines 8 and 13317 is executed whereby balls 4 and 1 
have scheduled a collision at time 25 and the index m, of the third party is remem- 
bered. Since there was no partner in the new event previously scheduled by ball 1, 
m, becomes A and lines 19 and 20 are skipped. 

Time 25 becomes the smallest one in the event-list and the next two cycles, 5 and 
6, are spent on processing two events, et’enf[l, new[l]] and eoent [4, new[4]], 
both representing the collision of balls 1 and 4 at time 25 but from the “viewpoints” 
of two different balls. Processing the collision event by ball 1 generates a new 
boundary crossing scheduled for time 94. Processing the collision by ball 4 then 
generates another collision scheduled for time 87 with ball 2. The latter collision 
preempts the previously scheduled boundary crossing by ball 2 for time 124. The 
result of all this processing is shown in Fig. 5.2~. Two velocity vectors are indicated 

‘The order 1, 2, 4, 3 of ball selection for the first four cycles is compatible with the algorithm. 

However, a persistent reader might ask why this order is not I, 2, 3, 4. Initially, the author suspected an 

error in the program when noticing the transposition of 3 and 4. However, no error was found. The 

explanation of the transposition is presented in Appendix thereby giving more details of the heup 

algorithm. 
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for each colliding ball in Fig. 5.2c, before and after the collision. As seen, ball 1 has 
collided, not with ball 4, but with its periodic image. 

The sequence of snapshots shown in Fig. 5.3 corresponds to the initial condition 
of the balls in Fig. 5.2, but without sectoring. During cycles 1 to 4, two collisions 
are scheduled: balls 1 and 4 for time 25 and balls 2 and 3 for a distant time 388. 
However, after cycle 5, the more distant collision of balls 2 and 3 is preempted by 
a collision of balls 1 and 2 for earlier time 226. As a result, ball 3 is left without 
a collision; its tentative collision is turned into a no-partner event which will be 
convenient to call advuncement. At cycle 6, the preempting collision of balls 1 and 
2 for time 226, is itself preempted by a collision of balls 2 and 4 scheduled for even 
earlier time 87. As a result, ball 1 has now scheduled an advancement event, the one 
previously listed as a collision schedued for time 226. 

It seems that events develop faster in the experiments without sectoring shown in 
Fig. 5.3 than in those with sectoring in Fig. 5.2. Without sectoring, the balls 
schedule their new events with larger horizons and are more “aggressive.” However, 
each cycle here takes more computing time. We have continued both experiments 
for lo5 collisions, with each pairwise collision being counted twice. Without 
sectoring it takes more computing time than with sectoring. (The ratio is 3: 1.) 

This is so because to schedule a collision with sectoring, a ball should check nine 
neighboring sectors including its own, where it finds at most three other balls. 
Without sectoring a ball should check the same three balls and their 3 x 8 periodic 
boundary images. Functions interaction-time are formally different in the two cases. 
In the case without sectors, the time of a next collision with a bail A is in fact given 
not as (2.2) but as the minimum of nine times. One of these represents a collision 
with A and is given by (2.2), and the other eight represent collisions with eight 
periodic images of A. 

6. COMMENTS ON THE IMPLEMENTATION OF THE ALGORITHM 

Overlaps. The billiard simulation should be tolerant with respect to a small 
overlap of the balls. Figure 5.3 shows “a preemption of a preemptor” phenomenon 
when ball 1 has preempted a collision of balls 2 and 3 by scheduling an earlier colli- 
sion with ball 2 (Fig. 5.3b), only to be later preempted by ball 4 which schedules an 
even earlier collision with ball 2 (Fig. 5.3~). In simulations with thousands of balls, 
more involved phenomena of this kind occur. While combined with the roundoff, 
they occasionally cause slight overlappings as shown in the following example. Sup- 
pose a scheduled collision of balls A and B for time tAB is later preempted by 
scheduling a collision of B and C for time tBc< tAB. As a result, the collision event 
for A becomes an advancement for time tAB. Suppose that later in the computa- 
tions, a collision of C and D scheduled for time t cD < t,, preempts the collision of 
B and C. As a result, the collision event for B becomes an advancement for time 
f,,. Now the originally scheduled collision of A and B for time I,, needs to be 
scheduled again. However, it will be done starting with different initial positions. If 

581,94;2-2 



270 BORIS D. LUBACHEVSKY 

formula (2.2) is used in this scheduling, then c = 0 and t = 0, because max(time 1, 
time 2) = tAB. Because of roundoff errors and different computational paths, c may 
be slightly negative as if balls A and B were slightly overlapping at time t,, causing 
f to be negative. The existing program handles this problem as follows: whenever 
interaction-time computes a negative but small by absolute value t in (2.2), the 
value of t is replaced by zero. 

Advancement events. A preempted two-component interaction is turned into an 
advancement for the third party. For example, the preempted collision for time 388 
of balls 2 and 3 in Fig. 5.3a is turned for ball 3 into an advancement in Fig. 5.3b. 
A more aggressive strategy would perform a full-fledged new event scheduling for 
ball 3. Such strategy is less efficient partly because advancements are usually plan- 
ned far into the future and have a great chance of being rescheduled. It is not 
worthwhile to waste precomputations on them. Only a small fraction of scheduled 
advancements “survive” rescheduling. In most simulated cases less than 15 % of all 
processed events are advancements. More importantly, the fraction of the processed 
advancements does not grow with N. (No theoretical analysis of this statement is 
available.) 

Delayed update. There exists a subtle inefficiency in the algorithm in Fig. 4.1. 
When scheduling an interaction, the algorithm applies advance and jump opera- 
tions. If the event is later preempted, these computations are wasted. For example, 
when scheduling a collision of balls 2 and 3 for time 388 (Fig. 5.3a), new velocities 
are computed, using jump. Later, however, this collision is preempted (Fig. 5.3b). 
To correct this inefficiency, the application of advance and jump should be delayed 
until the latest possible moment when the scheduled event is being processed. 
Figure 6.1 represents a variant of the algorithm which uses this idea. 

The encoding of partner is different in the algorithm in Fig. 6.1 compared with 
that in Fig. 4.1. Assuming the interaction has not been processed yet, in the new 
version we have 

partner [i, new [i] ] 

A for an advancement 

= the index of the partner for a two-component interaction 

N + the index of the obstacle for a one-component interaction. 

After the interaction has been processed by one participant i, but not by the other 
j# , partner [ j, , new [ j,]] becomes negative to indicate that no state update by 
the second participant j, is required. This is so done because i, has updated both 
states. 

This code does not save a great deal in the billiard case because here advance and 
jump are much lighter computationally than interaction-time. The update pattern 
of array time Cl: N, 1:2] in the algorithm in Fig. 6.1 is the same as in the one in 
Fig. 4. I. 
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initially cur~nr time t 0 and for i = I .2,...N : 

new,[i] t I. old[i] t 2. rime[i,l] t 0, par-me~[i,l] t A, 
rfute[ i, I] t initial state of component i. ewnf[i,2] t event[i, I ] 

I. while current-time < etld rime do { 
2. c~wrenf-time t ,m~i~~Jrin~c [i. neM.[ i]] : 

i. t an index which supplies this minimum (i.e.. crrr-rerlr-rime) ; 
3 .sturcl t cld~‘ar~r,c(s,ate[i*. o/d[i*]]. fime[iA. o/d[i*]], ~‘me[i*, nrx,[i-I]) ; 

4. .;# t [wrner~i*, neM~[i*]] : 
s. ifj# = A then srure[is, neHs[i.]] t s/utcl 

6. else /” case j, f  A “/ 
7. if .j# > 0 then /” state update required “/ 
8. if j, > N then /” one-component interaction “/ 

sfule [ix , neM,[i*]] t jump(sfute I, j#-N) 
9. else { /” 1 5 J# I N. two-component interaction “/ 

IO. store? t ud~vmce(stufe[ ,j#, n/d[j#]] , time[j#, oWj,ll, timefj,, neM$j#ll) ; 
I I. (state [ i * , new,[i*]], stufe[j,, new[j,]]) t jump(sfurel, sfure2) ; 
12. purmer[ j,, nenl[j,]] t -i* ; /” negative partner flags no state update for j# “/ 

} : /” end two-component interaction close, 
end state update required close, end ,j# # A close “/ 

13. new,[i*] t old[i=] ; old[i*] t Snew[i*] ; 
14. P t min P,,, , 

, E /\(I.) 
where A(;*) = {.j 1 IljSN, j#i*, fime[j,ncw[j]J 2 P,.,}: 

if P < +W then j, t an index which supplies this minimum (i.e., P) ; 

15. Q + ,:i;Q,.k , whereB = {k / I<X$K}; 

if Q < +OO then XX t an index which supplies this minimum (i.e., Q) ; 

16. R t min{P, Q} ; rime[i*, neMs[i*]] t R ; 

17. if R < +co then 
18. if Q < P thenpurmer [i,, newa[i*]] t N + k* 

19. else { /” case Q > P “/ 
!O. time[j*, new[j,]] t R ; 
!I. mi t par-fner [j*, new[j*]] ; 
!2. partner [ix. nex,[ik]] t j* ;purtner [j,, nebi~[j*]] t i* ; 
!3. if m. f  A and m* # i* thenpurmer- [m*, neKr[m*]] t A ; 

} 1” end Q 2 P close “/ 
} /” end while loop “/ 

FIG. 6.1. A version of the simulation algorithm with delayed state update. 

Can the third party be identical to the first party? In both versions of the algo- 
rithm, the third party update is conditioned to m, # i, (lines 18, 19, and 20 in 
Fig. 4.1 and line 23 in Fig. 6. l), which requires the third party to be distinct from 
the first party, the initiator of the update. The existing program for billiard balls is 
supposed to report an occurrence of m, = i,. This condition has never been reported. 
Is identity m, = i, at all possible? 
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We can imagine a scenario when equality m, = i, is caused by two components 
interacting twice with the second interaction occurring after the first one without 
other components or obstacles intervening in between. In the billiard case with 
periodic boundary conditions, subsequent collisions of the same pair of balls is 
highly improbable for large N. In a different system, such occurrences may be 
probable even for large N. That is why the execution is safeguarded with the test 

m*#i,. 

7. CONSISTENCY OF BASIC OPERATIONS 

In an application, the three basic functions of Section 2 are derived from a consis- 
tent model: by integrating differential equations of motion of a system, using con- 
servation laws, etc. However, the formulation of the algorithm in Section 4 employs 
no additional model. Obviously, arbitrarily “bad” basic functions can cause 
arbitrarily bizarre behavior even in a “good” algorithm. If we wish to analyze the 
algorithm correctness, we should request certain consistency properties in the basic 
functions to start. Thus, we introduce the following conditions: 

(I) Function interaction-time is commutative with respect to the com- 
ponents; i.e., it depends on the unordered pair of components, although in (2.1) the 
two participants in the interaction are represented in a particular order. 

(II) Similarly, function jump depends only on the unordered pair of 
arguments. This means that assignment (new-state2, new-state 1) t jump (state 2, 
statel) produces the same new’-statel, and new)-state2 as assignment (2.5). 

(III) Function aLit~nce (stafe0, timel, time2) satisfies a two-parametrical 
semigroup property with respect to its second and third argument, i.e., for any 
t, < t, 6 t, we have advance (advance (s, t,, t2), t,, t3) = advance (s, t,, t3) for any 
state s. 

(IV) Moreover, there is a proper associativity between advance and interac- 
tion- time. Namely, if t = interaction- time (s, , I,,.), and t,<t,<t, then t=interac- 

(ion-time (advance (So, t,, t,), t,, ,). Here dot ( . ) replaces either an appropriate pair 
(state, time), if we have a two-component interaction, or an obstacle, if we have a 
one-component interaction. For a two-component interaction-time, this property, 
coupled with (I), implies a similar associativity with respect to the second set of 
arguments or with respect to both sets. 

(V) Components are never stuck with each other. Namely, if two components 
1 and 2 with state 1 and state2 are interacting, i.e., (2.3) holds, jump is applied and 
new-state 1 and nexstate2 are computed according to (2.5), then interaction-time 
(new-state 1, time, new-state2, time) > time. Similarly, if a component with state is 
interacting with obstacle, i.e. (2.8) holds, jump is applied and new-state is computed 
according to (2.7), then interaction-time (new-state, time, obstacle) > time. 
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Computationally conditions (I)-(IV) might be “slightly” violated because of the 
roundoff. This can cause the simulated history to be dependent upon the processing 
order. In the billiard simulation, if processing is organized in two different ways, 
usually after a few dozen collisions by each ball, an accumulation of small quan- 
titative roundoff errors causes qualitative divergence of the history, which deter- 
mines, for example, which ball collides with which. Computational physicists are 
aware of such divergence [3] and consider it a variant of physical irreproducibility. 
It is worth stating, however, that the second run of exactly the same serial program 
starting with the same input data produces exactly the same results. 

Now we are going to introduce a condition of a different kind. Consider the set 
of components and obstacles Z(t) interacting at a particular time t. If I(t) is non- 
empty, we may introduce a binary relation A among the elements in Z(t), assuming 
iAj if i is interacting with j at t. Let - be a reflexive, symmetric, and transitive 
closure of A, so that * is an equivalence. With this definition, the condition is: 

(VI) No equivalence class for the relation - contains more than two 
elements. 

For example, in the billiard case (VI) prohibits participation of more than two 
balls in the same collision, but several disjointed pairwise collisions may take place 
at the same time. Figure 7.1 shows such a prohibited triple collision where (2.4) 
holds for the pair (i = 1, i = 2) and, separately, for the pair (i = 2, j = 3), but not for 
the pair (i= 1, ,j=3), because Ip, -pjI >D. 

In Fig. 7.1, the initial condition before collision, including positions of the balls 
and their velocities vi, v2, and v~, is mirror symmetrical with respect to the middle 
vertical line M. There are two possible orders for processing this collision by the 

FIG. 7.1. A triple collision 
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algorithm. In one order, balls 1 and 2 first collide and obtain new velocities v\” and 
u(‘) Then balls 2 and 3 collide and obtain new velocities JJ~) and vy). The initial 2 . 
velocity of ball 2 for the second pairwise collision is u$” as if the second collision 
occurred later than the first one. The net result of the triple collision is the three 
balls moving away from the collision site with velocities u\‘), ui2), and u?‘, which are 
not mirror symetrical with respect to M. Hence the coutcome of the triple collision 
depends on the order of processing as does the history of the entire simulation. 

With infinite precision computations, in the case of chaotically colliding billiard 
balls, the probability of violating (VI) is zero. However, in our finite precision 
experiments multiple collisions could practically occur and hence (VI) could be 
violated. The proof in Section 8 of the correctness of the simulated trajectory should 
be understood as an assurance that if the machine precision is infinite, the correct- 
ness holds for as long as (VI) holds. 

In order to show that the algorithm in Fig. 4.1 reconstructs the trajectory of each 
component “correctly” we must know what a “correct” trajectory is. With assump- 
tions (I))(VI), starting with a global state at time 0, we can uniquely define the 
system state at any positive time using the naive algorithm discussed in the 
Introduction. We call the obtained trajectory the correct one. 

The algorithm in Fig. 4.1 ignores many events on correct trajectory; our task is 
to prove that despite this fact, the trajectory does not change. 

8. INVARIANTS AND CORRECTNESS PROOF 

The actions of both simulation algorithms in Fig. 4.1 and in Fig. 6.1 can be 
summarized as follows: a repeated update of arrays neM> [ l:N], old [ 1: N], and 
event [ 1 :N, 1:2] in such a way that the conditions 

max tinze[i, ofd[i]] d ,r~$ time[i, new[i]] 
I<i<iV . . 

(8.1) 

remain invariant. For i= 1, 2, . . . . N we have 

and 

either partner [i, new [i] ] = A, 

or j= partner [i, new [i]] is an integer in the interval N + 1 < j d N + K, (8.3) 

or j is an integer in the interval 1 < j d N and partner [j, new [j] ] = i. 

Conditions (8.1), (8.2), and (8.3) are trivially satisfied in the beginning of the 
simulation. Invariance of condition (8.1) is obvious. As to (8.2) and (8.3), their 
invariance can be violated temporarily after a cycle during which one component 
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participating in a two-component interaction has been processed but the other has 
not been yet. After both components have been processed, and no other two-com- 

ponent interaction processing has been started, (8.2) and (8.3) hold. For (8.2), it 

follows from lines 4, 5, and 6 in Fig. 4.1 and for (8.3), it follows from symrnetricity 
of matrix P,,. This symmetry is an obvious implication of (I) and (II). Observe, that 
the invariance of (8.1) and (8.2) requires no consistency conditions (I)-(K). 

Invariant (8.2) is the key to understanding the “wasteful” strategy of the data 
update in this algorithm. Consider an example. Let N= 3, K = 0. Figure 8.1 shows 
trajectories of three billiard balls A, B, and C. We assume that at time I =0 the 

balls are positioned on the same horizontal line and we suppose that these are their 
old positions, i.e., those stored in array event [ ., old[ .]I. 

On the basis of the old events only, C can see two immediate collisions, one with 
B when the balls occupy positions 82 and C2 (call it collision B2, C2), and the 

other with A, namely collision A2, Cl. C also notes that both A and B have a 
scheduled event at time earlier than times of either A2, Cl and B2, C2. Thus, the 
set of balls X over which the minimum of P,-, is to be taken according to (8.2) is 

empty, and this minimum together with the time of the immediate next interaction 
for C is + co. 

With the given old events, the following assignment of new times would satisfy 
(8.2): both time[A, new[A]] and time[B, new[B]] are equal to the time of colli- 
sion Al, Bl, end time[C, new[C]] = + co. With such an assignment, three 
inequalities (8.2) turn into equalities. 

The assignment time [i, [new[i]] = + cc simply means that C sees to future 

FIG. 8.1. Asynchronous collisions of three billiard balls 
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interaction at this stage of simulation. A more aggressive strategy of precomputa- 
tion, in which C would look one more step ahead and would examine possible colli- 
sions with A and B based on their velocities after an as yet unprocessed collision 
Al, Bl, is possible. However, the proposed algorithm does not use such strategy. 
The aggressive strategy might work well for a small number of balls. For many 
balls, the aggressive strategy would require a complicated data structure to support 
an arbitrary many-step lookahead. In our algorithm, C does not look for more than 
one step ahead, thus allowing us to keep the data structure simple. 

Invariants (8.1) and (8.2) imply the following useful invariant 

To prove the correctness of the algorithm we will show that if 

(*) the simulated trajectory is identical to the “correct” one defined in 
Section 7, for all t in the interval 0 < t < max, G iG N time [i, o/d [i]], then 

(**) after all events with times equal to min, G iG N time [i, new [i]] will 
be processed, the extended simulated trajectory will be identical to the “correct” 
trajectory for all c in the interval 0 d t d min , < I < N time [i, new [i] 1. . . 

This would constitute the inductive step. The basis for the induction is obviously 
satisfied since (*) is correct for the program state initialized for t = 0 as described 
in Fig. 4.1. 

The “correct” trajectory has no interaction on the open interval 
max l<i<N time[i,old[i]]<t<min,,i,, . . time [j, new [i]], because if it did, (8.4) 
would be violated. Hence the simulated trajectory is identical to the “correct” one 
for all t in the interval 0 < t < min 1 G I G N time [i, new [i]]. By (I))(VI), this property 
extends to the point t = min, sic N time [i, tzew [i] ] and this completes the proof. 

9. AN APPLICATION EXAMPLE: A DISK PACKJNG PROBLEM 

The following model is simulated in [7]: N points are placed randomly within 
an L x L square. Periodic boundary condition apply in both directions. The N 
points are assigned random initial velocities and in the absence of subsequent colli- 
sions would move with these velocities along straight lines threading through an 
infinite sequence of periodic images of the basic square. However, the points also 
begin to grow at a common rate into elastic rigid disks, with diameters that are 
given by linear function of time D(t) = at, t > 0. As a result, particule collisions 
become possible, and increase in frequency as D(t) increases. We permit D(t) to 
grow until the system “jams up,” thus obtaining the final packing. 

This is a variant of the billiard simulations. Two differences are: 

(1) instead of equation 1 p + utl 2 = D* as in Fig. 2.1, equation 1 p + utl 2 = (at)2 
has to be solved; the latter is still a quadratic equation with respect to t; 
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(2) the normal components of uleW and uTeW (velocities of balls after a colli- 

sion, see Fig. 2.2), have to be increased to guarantee that balls do not overlap or 
stick to each other. Any additive velocity larger than a/2 would be appropriate. 

Energy or momentum conservation are lost with such an additive; as the simula- 
tion progresses the system “heats up,” and computational precision may be lost as 
ball speeds increase. The existing program once in a while interrupts the simulation 
projecting all the ball positions into a particular time value, then scales down 
and balances the velocities. (The velocities G;, i = 1, .,., N, of N balls of equal masses 
are balanced if C,GiGtivi=O.) 

Figures 9.1 and 9.2 show some results of these experiments, in particular the 
so-called “rattler” balls which remains unjammed within the walls of jammed 
neighbors [7]. In the experiment presented in Fig. 9.2, the large square is sub- 

FIG. 9.1. 27 disks packed after 100,000 collisions; disk 24 is a rather. 
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FIG. 9.2. 2000 disks packed after 42 x 10’ collisions; dots mark significant rattlers. 

divided into 40 x 40 small square sectors (not shown in Fig. 9.2). Rather than 
checking a possible next collision with 8 x 1999 candidates, only about 10 disk 
candidates for the next collision are checked. 

10. COMPARING THE PERFORMANCE OF THIS ALGORITHM WITH 

THAT OF OTHER ALGORITHMS 

Physicists often study hard-sphere and hard-disk models using computing 
experiments. However, with the exception of [3, 11, nobody discusses the details of 
the algorithms used, and with the exception of [ 11, nobody gives performance data. 
We read in [ 11: “The IBM704 calculator handles about 2000 collisions per hour for 
100 molecules and about 500 collisions per hour for 500 molecules.” 
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Assuming that IBM704 was not slower than 0.02 MFLOP [2], this scales to no 
more than 30 collisions per second for a 1 MFLOP machine. The speed of our 
calculations is in the range 15&450 pairwise collisions per second (independently 
of the number of balls) on VAX8550 which has speed 1 MFLOP. Thus, even the 
most pessimistic comparison with [ 11 gives about an order of magnitude speed-up 
of our algorithm. 

Simulation of 50,000 to 55,000 committed events in a random configuration of 
160 disks is reported in [4]. Let us count one pairwise collision as two committed 
events, and one sector boundary crossing or cushion reflection as one committed 
event. 

The model [4] is different from the one we simulated in that instead of periodic 
boundary conditions, rigid elastic “cushions” are employed to guard the cell 
boundaries. To compensate for the difference, let us equare an external boundary 
crossing in our program with one cushion reflection in [4]. Note that when 
scheduling a collision close to the cell boundary, our program considers not only 
internal disks as the candidates for collision, as program [4] does, but also their 
periodic images. This additional complexity in our program more than compensates 
for a possible loss of complexity due to substituting a cushion reflection with a 
boundary crossing. 

In our measuring run, sector boundary crossings were counted only for 16 sec- 
tors specified in series I in [4]. The run was continued until the number reached 
52,000 as in [4]. It took 90 s CPU to complete this run. 

A similar run in [4] (Series I), took 440 s on one PE and 62 s on 32 PEs, nodes 
of a hypercube MARK III. (For 32 and 64 sectors, it took, respectively, 44 and 42 s 
in [4].) One node of MARK III is about 60% faster than our VAX 8550. Besides, 
our algorithm is a Fortran code while program [4] is written in C-language, both 
compiled under UNIX. This yields an additional 10% in favor of our algorithm, 
since Fortran is slower than C under a UNIX compilation. Thus our serial algo- 
rithm runs about as fast as the parallel Time Warp [4] on a 32-node hypercube.’ 

11. CONCLUSION: OTHER BILLIARD-LIKE SIMULATIONS AND AN UNSOLVED PROBLEM 

A collision of two billiard balls of radii D/2 can be considered as an interaction 
of two zero-size particles with potential V(r) = 0 for distances Y> D and 

’ After the measuring run was completed, A. P. Wieland informed the author that one sector boundary 

crossing is actually counted as two events in [4] rather than as one, as is assumed in this paper. Also, 

one pairwise disk collision is counted not as two events as assumed, but as 4 + m events, where variable 

m is the number of disks located in the involved sectors at the time of the collision. Suppose only one 

sector is involved in each collision, and there are totally 16 sectors (as in Series I in 141). Then m is 

about 10. This makes the total count of events generated in [4] during a comparable simulation time 

interval several times higher than was assumed in the experiments. This, in turn, makes our program 

faster than program [4]. 
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V(r) = + a for r < D. More general piece-wise constant potentials can be dealt with 
using the same algorithm, e.g., the square-well potential [ 11, 

v= +a, if r<o, 

v= v(), if f7,<r<uz 

v=o, if c2<r, 

where Vo, cr,, and o2 are finite constants. We can imagine two concentric balls: the 
“hard core” ball of diameter 0, and a larger “soft shell” ball of diameter CJ*. We 
could then have two types of “collisions”: internal, of the hard-cores, and external, 
of the soft-shells. Each type has its own jump function. 

By the mean of a Monte-Carlo simulation, [9] shows that larger particles move 
against the gravitational force if they are placed together with smaller particles in 
a vibrating container. The balls of different diameters can be easily handled in our 
scheme, if the ball diameter becomes a part of its state. Model [9] can be easily 
simulated using direct represetations of particle dynamics, instead of Monte Carlo. 

Components lacking homogeneity can be treated in the same way, i.e., by making 
the type or the class identification of a component an unchangeable part of its state. 
Perhaps, certain granular flow models can be treated in this way. Combat simula- 
tions [ 111 present such inhomogeneity to a large extent, since here components 
represent military units of opposing armies, and types of units vary. 

Collisions may be generalized to any state changes, including changes that do not 
immediately lead to a trajectory change. A typical simulation rule in [ 111 is: “if 
within radius G, a unit detects m units of the same army and n units of the opposing 
army, then it takes course of action c(n, m), from the time of detecting this situation 
until the time when another rule becomes applicable,” We can represent these rules 
by surrounding a zero-sized unit by several circles, each representing a rule. A 
counter “inside” the unit state gets an instantaneous increment, when a particular 
circle “collides” with another unit. The counter change may or may not trigger a 
change in the course of the action. Such mechanisms can be represented within the 
discussed framework and simulated using the algorithm in Fig. 4.1. 

According to [lo], a variant of the dense packing algorithm can be used in 
finding optimal spherical codes. Here the task is to find N points p,, i= 1, . . . . N, on 
the sphere in the k-dimensional Euclidean space in such a way that 

mini,, distance( p,, p,) -+ max. 

We would start with a random configuration of N “seed’ points and then grow 
“caps” of equal size, each cap having a seed in the center. Caps are prevented from 
the overlap by collisions. 

Although the algorithm is practically ehicient, no theoretical model which 
explains this is available. The model should explain, for example, why the number 
of overhead advancement events remains bounded from the above independent 
of N. 
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cycle I cycle 2 cycle 3 cycle 4 

FIG. A.l. Evolution of the heap tree for the example in Fig. 5.2 

APPENDIX 

The program forms the original heap tree in a natural order: ball 1 at the top, 
then balls 2 and 3 at the second level, and then ball 4 attached to ball 2 at the third 
level (cycle 1 in Fig. A. 1). The value of the key time [i, new [i] ] = 0 for all 
i= 1, 2, 3,4. In Fig. 1, a key is indicated in parentheses after the ball number. At 
each cycle the ball at the tree root gets processed. Thus, at cycle 1 ball 1 is pro- 
cessed. As a result, key time [ 1, new [ l]] becomes 58. This “heavy” key together 
with the ball should move down to keep the heap discipline: any parent must be 
not “heavier” than its children. There are two possibilities to move key 58 down: 
to the left or to the right branch. The program examines the branches from left to 
right. Hence ball 1 moves down to the place of ball 4. “Light” balls 2 and 4 move 
up to the vacant places. Cycle 2 begins with ball 2 at the root. During cycle 2 ball 
a is processed, and key time [Z, new [2]] becomes 124. Now ball 2 must move 
down, while balls 1 and 4 move up to the vacant places. At the beginning of cycle 
3, ball 4 (not ball 3!) happens to reach the root and therefore gets processed. 
During this processing, both time [4, ww  [4]] and time [ 1, new [l]] become 25. 
Finally, during cycle 4 ball 3 gets processed. Thus, the balls are processed in the 
order 1, 2, 4, 3, not in the order 1, 2, 3,4. 

Figures A.2 and A.3 show the fragments of the FORTRAN code dealing with 
heap-sort mechanism for N= 2000 balls. The heap structure is initialized at the 
beginning of the execution (Fig. A.2). Each time value time [k, neM: [k]] is changed, 
subroutine pull(k, 2000) (Fig. A.3) is invoked to adjust the heap. 

c initialize heap 
do 10 k=1,2000 

pWU=k 
pha(k)=k 

10 continue 

FIG. A.2. Heap initialization fragment. 
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subroutine pull(k,iend) 
c pulling up 1)1 down in the heap-son algorithm 
c minimum at the nwt, heavy items go down 

camm~n /theap/ time(2000,2),new(Za),pah(2000).pha(20M)) 
integer pah.pha 
integer new 
double precision time 
double precision aa. aaj. aajl 

if((k.ge.l).or.(k.le.iend))goto 2 
print *.‘in pull: request for item at k=‘,k 
print *,‘endlist=‘,iend 

StOp 
2 continue 

c PULL-UP MITIALIZE 
“I =pha(k) 
aa=time(nl .new(nl)) 
jl=k 

c SET SON il AND FATHER jl 
5 il=jl 

jl=j1/2 
if(jl.1t.l) goto 8 
aaJ=time(pha(jl).new(pha(jl))) 

c IF FATHER SMALLER THAN SON THEN PULL-UP IS COMPLETE 
if(aaj.le.aa) goto 8 

c PULL THE FATHER jl DOWN TO THE VACANT SON PLACE i 
ml=pha(jl) 
pab(m l)=i 1 
pha(il)=ml 
got0 5 

c PLACE THE GRANDSON UP 
8 pha(il)=nl 

pah(nl)=il 
**it******************************** 

cPULL-DOWN INITIALIZE 
9 j=k 

n=pha(k) 
aa=tlme(n,new(n)) 

c SET FATHER i AND SON j  
10 i=j 

j=2*j 

c IF NO SONS THEN EXIT 
iffj.gt.iend)gotn 30 

c LOCATE THE LEFT SON j  
aaj=time(pha(i),new(pha(j))) 

c IF ONLY ONE SON THEN BYPASS COMPARISON 
if(j.eq.iend)goto 20 

c COMPARISON: MAKE j  TO  BE THE SMALLEST SON 
aajl=time(pha(j+l),new(pha(j+l))) 
if (aaj.le.aajl) goto 20 
i=i+ 1 
&j=aaj 1 

c IF GRANDFATHER SMALLER THAN THESE SONS THEN EXIT 

20 if(aa.le.aaj) got0 30 
c PULL THE SMALL SON i UP TO THE VACANT FATHER PLACE i 

m=pha(j) 
pab(m)=i 
pha(i)=m 
goto 10 

c PLACE THE OLD GRANDFATHER DOWN 
30 pha(i)=n 

pab(n)=i 
W”Ill 
end 

FIG. A.3. Heap update subroutine. 
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