
JOIJKNAL OF COMPUTATIONAL PHYSICS 94. 255-283 (1991)

How to Simulate Billiards and Similar Systems

BORIS D. LUBACHEVSKY

AT & T Bell Lahoratnrie.v, Murmq Hill, New Jersey 07974

Received October 23, 1989; revised February 14, 1990

An N-component continuous-time dynamic system is considered whose components evolve
independently all the ttme except for drscrete asynchronous instances of pairwrse Interactions.

Examplcs include colliding billiard balls and combat models. A new etlicient serial cvent-

driven algorithm is described for simulating such systems. Rather than maintaining and

updatmg the global state of the system, the algortthm tries to examine only essential events,
i.e., component interactions. The events are processed in a non-decreasmg order of time; new

interactions are scheduled on the basis of the examined interactions using preintegrated equa-
tions of evolutions of the components, If the components are distributed uniformly enough in

the evolution space, so that this space can be subdivided into small sectors such that only

0(1) sectors and 0(1) components are in the neighborhood of a sector, then the algorithm
spends time U(log N) for processing an event whtch is the asymptotic minimum. The aigo-

rithm uses a simple strategy for handling data: only two states are maintained for each
simulated component. Fast data access in this strategy assures the practical efficiency of the

algorithm. It works noticeably faster than other algorithms proposed for this model. 1, 1991

Acadcrmc Prra>, lrv.

1. INTRODUCTION

Many continuous time dynamic systems can be accurately approximated by
models whose components evolve independently all the time except for discrete
asynchronous instances of pairwise interactions. A typical example is a set of
chaotically colliding billiard balls. Each ball moves along a straight line until it
collides with another ball or an immobile obstacle. Only pairwise ball collisions are
considered, since the probability is zero that more than two balls are involved in
the same collision.

Such “billiard” or “hard sphere” models have been in use among computational
physicists since the pioneering work [11. Recently these models have attracted the
attention of simulationists [4]. The task of simulation of such a model is the
reconstruction of the history of each component. Many models, even as far from
billiards as models of combat [111, are conceptually similar to billiards. The
similarity is in the techniques for handling spatial combinatorics of multitude of
asynchronous pairwise interactions. Processing an interaction (two-ball collision)
or an autonomous evolution of a component (moving a billiard ball along a
straight line) depends on the specific model in hand.

255
0021.9991/91 $3.00

Copyright TV 1991 h) Academic Prers. Inc

All nphts ol reproductton ,n any rorm rererwd

256 BORIS D. LUBACHEVSKY

Most recent attention has been drawn to speeding up billiard-type simulations
[4, S] on parallel computers. However, it is still not obvious how to write such
simulations which are efficient in practice on a common serial computer. A “naive”
serial algorithm advances the global state of the billiards from collision to collision.
The states of all N balls are examined and updated at times f, < t, < 2, < where

t, is the initialization time and fi+, is the nearest next collision time seen at time
t,. The naive scheme is inefficient for large N because

(a) the same collision is repeatedly scheduled an order of N times until it
occurs,

(b) at a typical cycle, most balls are not participating in collisions; still, they
are examined by the algorithm.

Aside from problems (a) and (b), there exists problem (c) of finding an inexpen-
sive method of determining the nearest collision for a chosen ball. A straightforward
method is to compare the chosen ball with N - 1 others. The standard improve-
ment in this method is the division of the pool table into an order of N sectors.
Only balls in the neighboring sectors have to be checked to determine the

immediate collision which reduces the work from O(N) to 0(1) per one collision
scheduled.

A natural idea for improvement in (a) and (b) is to postpone examining and
updating the state of a ball until its collision. Implementing this idea does not
appear as easy as it might seem. As the simlation progresses, a scheduled collision

of a given ball may require rescheduling. The need for such rescheduling and the
desire not to lose information about already planned collisions led in [1] to a com-
plicated data structure and update scheme called “time-table” in [3]. Observe that,
with all its inefficiency, the naive scheme has an attractively simple double-buffering

data structure. The structure consists of only two copies of the global state vector,
the old and the new, so that the new vector is computed on the basis of the old one
and, in turn, becomes the old one during the next cycle.

We propose a new serial algorithm for simulations like billiards. The attraction

of this algorithm is that it utilizes a simple and easy to hand double-buffering data
structure, while avoiding problems (a) and (b). Problem (c) is handled in our algo-
rithm using the standard technique of sectoring. In most cases the algorithm

examines and processes only the events whose processing is unavoidable, e.g., ball
collisions and boundary crossings. Sometimes, like the naive algorithm, it also
processes events whose examinining is not necessary. However, the fraction of such

overhead events is small and does not grow with N, while the speed-up due to
simplicity of data handling is substantial. The proposed algorithm achieves the
same theoretical optimal performances as other published algorithms, i.e., O(log N)
instructions per one porcessed event with sectoring and O(N) without. But its prac-
tical speed for the billiard case is at least an order of magnitude higher than that
of other algorithms. (We compare, of course, computer-independent algorithmic
speeds.) We were able to handle millions of collisions on a non-supercomputer

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 257

VAX8550 using FORTRAN. Using languages better adapted for the computer
should result in additional speed-ups.’ The computer handled 2000 balls in most
experiments (see, e.g., Fig. 9.2 in Section 9). If needed this number could be easily
increased to 104.

When writing this algorithm special attention was paid to an often overlooked
trade-off between the complexity of data organization and the amount of computa-
tions the algorithm is willing to abandon risking to incur them again. For example,
to determine the next collision for a ball A we have to try to have it collide with
any other ball (within its neighborhood, in the presence of sectoring) and then
choose the collision closest in time, say it is a collision with ball B. However, the
tentative parner B, in its turn, may choose an even better party C, C# A. As a
result, later in the computations, A might figure out that the party Bl, which was
previously rated second to best, is to be considered the best.

Rating potential candidates costs computations: the algorithm tries to simulate a
potential collision of ball A with a candidate X in order to rate this X. Should the
algorithm retain the results of these preliminary simulations which correspond to
the second, third, best parties Bl, 82, when the best candidate B is being
chosen? Or is it more economical to abandon the information obtained during the
rating and, if later needed, simulate these collisions again? The answer determines
the data organization strategy which crucially affects algorithm efficiency. In the
billiard case, a “pack rat” strategy entailing a search through dumped items to find
the needed one incurs too high a cost. In a general case, the best trade-off depends
on the relative cost of the basic operations, e.g., the amount of computing needed
for repeated scheduling versus that needed to retrieve the same data.

Another scale of strategies and the associated trade-off is that of the “aggressive-
ness” of precomputation. In a more aggressive strategy, when the next collision for
ball A is being scheduled, not only the existing states of other balls are taken into
account but also their possible future states which might result from their as yet
unprocessed collisions. The degree of aggressiveness might be measured in how
many future collisions with the other balls are considered ahead. The two scales are
correlated: a more aggressive precomputation requires a more complicated data
structure and encourages the choice of a more “pack rat” data handling strategy.

In the described two trade-off scales, the strategy used in the proposed algorithm
is close to the “wasteful” and “lazy” ends of the scales, the opposite of the “pack
rat” and “aggressive” ones. Both the storage of not immediately needed data and
precomputation lookahead are reduced. The candidates for the next collision for a

’ In the UNIX environment, which is standard for AT & T computers, C-language is a better choice.

The author tried to exploit automatic FORTRAN + C translator (named F2C), recently developed in
AT & T Bell Laboratories. The created C-code worked about 10% faster than the original FORTRAN

code. If a manually produced C-code was used, one would expect 20-30% speed-up. Profiling the code

suggests that additional, perhaps, 50% speed-up is achievable by the usual lower level optimization,

such as the reduction of the number of subroutine calls and indirect array references. These suggestions

have not been vigorously tried yet, because the code “as is” seems ot be sufftciently fast for the
considered applications.

258 BORISD.LUBACHEVSKY

particular ball which are rated below the winner are abandoned once the winner is
chosen. The future collision of a ball is predicted based only on the existing states
of the other balls, not on their future states after possible future collisions.

For a reader who is not familiar with simulation terminology, it is worth adding
that the proposed is an event-driven simulation algorithm in which the state of the
simulated system is examined by the computer only at the times of the events, e.g.,

ball collisions. A physicist may be more familiar with the time-driven simulation
algorithms. Such algorithms (see, e.g., [S]) are usually employed in the many-body
problems in which the components, say particles, rather than evolving almost
always independently, are continuously interacting by exerting short and/or long
range forces. The two computational approaches are radically different and each
has its own difficulties.

A time-driven algorithm would maintain the snapshot of the states of all
simulated components at a time t and would advance the time from t to t + At by
modifying all these states. To assure sufficient precision At should be rather small.
As a result, the time-driven algorithm would be tremendously slower than the
proposed event-driven algorithm. Event-driven algorithms are the best (and often
the only practical) choice for models where discrete instantaneous events occur
asynchronously. In the proposed algorithm, if an event involving ball A is processed
for simulated time t, only the state of A is examined and explicitly modified. The
states of most other balls need not be known at t and are not examined by the algo-
rithm. In fact, the global state is explicitly known at no time t, except t = 0.
However, if we wish to know the global state, say, if we wish to known the location
of each ball at a particular time t, then additional computations of “projecting” the
motions of all balls into time point t are required.

The rest of the paper is organized as follows: In Sections 2 to 6, a definition of
the basic operations, the data organization, the formulation of the algorithm with
examples of its run, and some comments on the experience of its implementation
are given. These sections should be sufficient for a reader who wishes to understand
and write a simulation algorithm for a billiard-like system. Sections 7 and 8 intro-
duce, explain, and analyze the conditions under which this algorithm works
correctly. Section 9 presents an application example for the algorithm: a disk
packing problem; Section 10 compares the performance of this algorithm with
other published proposals, and the Conclusion discusses variants of the billiard
simulation and other simulation models like billiards, including combat models.

2. BASIC OPERATIONS

Assume that a basic function interaction- time is available which, given state 1 of
component 1 at time1 and state2 of component 2 at time2, computes the time of
the next potental interaction while ignoring the presence of other system com-
ponents:

time + interactionptime (state 1, time 1, state2, time2), (2.1)

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 259

where time>max(timel, time2). If interaction-time cannot find such finite time,
e.g., when two billiard balls are moving away from each other, we assume that + cc
is returned.

In the billiard simulation, the state of a ball is the pair of vectors state = (posi-

tion, tAocity). If the velocities of the balls are constant between the collisions, and
all balls are of the same constant diameter D, then (2.1) is of the form

time + max(time1, time2) + 2
where
f= (-h-JPTG)/a,

1

if hdOandh2-ac30

+ml, if h>Oorb’-ac<O
and
a = I uelocity2 - velocity 1 I 2,
b = (position20 - position 10) . (velocity2 - velocity 1),
c = 1 position 20 - position 101’ - D*,
position 10 = position 1 + velocity I (max(time 1, time2) - time 1),
position20 = position2 + velocity2 (max(time 1, time2) - time2),

(2.2)

where u v denotes the dot product of vectors u and U, and /uI denotes the length
of vector v: 1~1 = (u .u)‘!l. The expression for t in (2.2) is the least real solution
f = t _ of the equation at* + 2bt + c = 0 which is derived from / p + ut12 = D2, where
p = position20 - position 10 and v = velocity2 - velocity 1. The meaning of the latter
equation and of both its solutions t = t and t = t + is obvious from Fig. 2.1. Note
that c may be 0 in which case t = tp = 0 and time = max(time 1, time2). This means
that interaction-time is applied when one ball is already at the site of the scheduled
collision.

FIG. 2.1. The geometrical meaning of the two solutions of equation Ip + ~ltl’= D’.

260 BORIS D. LUBACHEVSKY

Two components 1 and 2 with state1 and state2 are said to be interacting, if

interaction- time (state 1, time, state2, time) = time (2.3)

holds for any value of time. For example, billiard balls i and j of diameter D each
with velocities and positions ui, pi and vi, p,, respectively, are interacting (i.e.,
colliding), if

lpj-P;l=D, (u,-u~)‘(P~-P,)<~. (2.4)

Assume that a basic function jump is available which, given state1 and state2 of
interacting components 1 and 2, computes nenl-state1 and new-state2 of these
components immediately after the interaction:

(new-state 1, new-state2) t jump (state 1, state2). (2.5)

When billiard balls 1 and 2 with vector velocities u,” and uild collide, only their
velocities experience jumps, not positions. Assuming the energy and momentum are
conserved, the tangential components of the initial velocities are not changed, but
the normal components are switched as depicted in Fig. 2.2. The velocities after the
collision are uyw and uyw.

A ball bouncing off a boundary of the pool table, in principle, needs not be
examined by the algorithm. It may be considered as an ordinary point on the
autonomous interval of the trajectory. For example, given positions (x0, ~0) and
the velocity vector u of a ball at time t = 0, we can construct functions
X(v, x0, ~0, t) and Y(u, x0, ~0, t) which would return the position x = X and y = Y
of the ball at time t without explicitly processing intermediate boundary reflections.

FIG. 2.2. Change of velocities of two billiard bails at their collision

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 261

The complexity of computations by functions X() and Y() would not depend on
the number of bounces. (This holds at least for a rectangular pool table.)

In most applications, however, such elaboration would be of little practical use,

because the ball would usually collide with another ball after at most one boundary
reflection. Besides, an explicit examination of the reflection event might be needed
anyway for statistical purposes and for convenience of data update. Thus we will
treat a reflection from an immobile obstacle as a separate event.

A boundary crossing may be considered under a periodic boundary condition
model, wherein a ball, rather than bouncing off, disappears at a boundary and
reappears at the opposite side (see Fig. 2.3). This may be treated as the same type
of event as boundary reflection. If the pool table is divided into sectors, a similar

type of event constitutes a ball moving from one sector to another. Such an event
should be examined by the algorithm in order to update the membership in the

sectors. We will treat all such events as one-component interactions.
We will assume that basic functions with the same names interaction-time and

jump represent one-component interactions

time +- interaction- time (state 1, time 1, obstacle) (2.6)

neM>-state +-jump (state, obstacle), (2.7)

where obstacle is the identification of a boundary or an immobile obstacle or a

demarcation line. To apply jump in (2.7) the component, whose state is represented
in (2.7), must be interacting with obstacle. The condition which defines such one-
component interaction is

interclction- time (state 1, time, obstacle) = time (2.8 1

FIG. 2.3 A ball is disappearing at a boundary and reappearing at another side

262 BORIS D. LUBACHEVSKY

holds for any time. This is similar to (2.3). Capital K will be reserved for the num-
ber of obstacles so that obstacle in (2.6), (2.7), and (2.8) is an integer in the interval
from 1 to K. The one-component versions of functions interaction-time and jump
will be easily distinguished by context from their two-component synonyms in (2.1)
and (2.5).

We also assume the availability of a basic function advance which, given state0
of a component at time0 and a value time1 2 time0, returns state1 this component
would have at time1 ignoring possible interactions with other components or
obstacles on the interval [timeO, timel]:

state 1 t advance (state0, time0, time 1). (2.9)

In a frictionless billiard, (2.9) is of the form

position 1 +- position0 + (time 1 - time0) velocity0 (2.10)

velocity 1 c velocity 0

which simply says that the ball moves with velocity0 along a straight line starting
from position0 at time0.

Note that in particular cases, specific calculations for interaction- time, advance,
and jump may be not as simple as in the billiard case. The assumption that they
are basic saves us from the burden to detail them in the general discussion.

3. DATA ORGANIZATION

The basic data unit of the algorithm is called event and has the format

event = (time, state, partner), (3.1)

where time is the time to which state of a component corresponds. Note that state
is the new state of the component immediately after the event, e.g., if a ball has
experienced a collision at time, the velocity-coordinate of the state is the new
velocity vector after the collision; partner identifies the other component, if any,
involved in the event. If there is no partner in the event, the program assigns a
special “no-value” symbol A to the partner coordinate. If time = + m, then the
other two coordinates in the event have no value; i.e., state = purtner = A.

At any stage of simulation, the algorithm maintains two events for each compo-
nent: an old, already processed in the past event and a new, next scheduled event.
This information is stored in array event [1 :A’, 1 :2], where N is the number of
components of the simulated system. Let us agree to understand a reference like
time [3, 1] as the time coordinate of element event [3, l] of this array.

Two arrays, new [1: N] and old[1 : N], with elements equal to 1 or 2 are main-
tained. For component i, new [i] is the pointer to the new event and old [i] is the
pointer to the old event. Thus the new event for component i is stored at
event [i, new[i]] and the old event is stored at event [i, old[i]]. When new [i] is
updated, oZd[i] is updated immediately afterward, so that the relation
new [i J + oId[i] = 3 remains invariant.

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 263

4. THE ALGORITHM

In the algorithm pseudocode in Fig. 4.1, /” and “/ mark the beginning and the
end of a comment, the minimum over an empty set of values is assumed to be + W.
The following short-hand notations are used:

p,, f!

~~t~~action-time(state[i,old[i]],time[i,old[i]],srate[j,old[j]], time[,j,o/d[j]]),

initially r,ur-rent-time t 0 and for i = I ,2,...N :

nek,[i] t I, o/d[i] t 2, time[i,l] t 0. purtner[i,l] t A,

Uate[i. I] t initial state of component i, e\,ent[i,2] t evenf[i, 11

I. while cur-wnt_time < end-time do {

2.

3.
4.

5.

6.

7.

x.
9.
IO.
I I.

12.
13.

14.
15.
16.

17.
IX.
IV.

20.

current time t ,giiNtime [i. nen,[i]] :

i. t an index which supplies this minimum (i.e., current--time) :

flf+i~[iv] t o/d[i*] ; old[i*] t 3-nebc[i=] :

P t min P,,, , where A(;*) = {,j 1 ISjSN, j#i,, rime[j,netix[j]] I
, t A(l.,

if P < +co then ,j* t an index which supplies this minimum (i.e., P) :
Q t minQ,,L . where B = {k j 1 IX <K} ;

itH

if Q < +ca then k* t an index which supplies this minimum (i.e., Q)
R t min{P. Q} ; time[L, new,[i*]] t R ;

if R < +co then {

sfotcl t uci\vncl~ (.rtute[i-, dci[i-I]. rime[j>, dd[i*]], R) ;
if Q < P then {

sfute [i*, new[i+]] t jftmp (statel, k,);

partner [i - , nerz,[i*]] t A :

} /” end Q < P close “/
else { /” case Q t P “/

time1 j-, neM.1 ,j-]] t R :
stute2 t udrunce (state [j* , o/d[j+l], time[j*, o/d[j*]], R):
(.stute Ii*, nm’ [i *] 1 . stute [j x . new[ja]]) t jump (srurel, stufe2)

mF t partner- [,j-, nebv[j,]] :

partner [ii* , nw[iv]] t ,j* ;purtner [j,, neK,[j*]] t i* ;

if m- # A and nr -i # i * then { /” update third party nr i “/
state [m -* , neM’[m,]] t

udwnc~e (.Wte[m*, o/d[m*]], time[m-, o/d[m*]]. time[mx. I

purtner [m x , newv[m-]] t A ;

} /” end update third party “/
} /” end Q 2 P close “1

} /” end R < +W close “/
} /” end while loop “/

FIG. 4.1. The simulation algorithm.

264 BORIS D. LUBACHEVSKY

where 1 6 i, j d N and

QIk zf interaction-time(state[i, old[i]], time[i, old[i]], k),

where l<i<Nand l<k<K.
The main cycle in Fig. 4.1 consists essentially of two steps:

(1) selecting the next component i, to process its event (line 2),

(2) processing the event (the rest of the cycle).

Processing the event means scheduling next events for the chosen component and
the other involved components, if any. P and Q are the nearest next interaction
times. There are two main cases in such scheduling depending on the type of the
future event:

(a) Q <P, when the scheduled interaction involves only one component i,
(lines 8, 10, and 11);

(b) Q >, P, when the scheduled interaction involves i,, a second party ,j,
(lines 8 and 13-l 7), and may involve a third party m *, the previous partner, if any,
of j, (lines 19 and 20).

Section 5 further explains this algorithmic structure in examples. Now we discuss
the aspects of the algorithm which are not represented in the aggregated
pseudocode in Fig. 4.1, namely the way minimizations in lines 2, 4, and 5 are
implemented. Since these techniques are well known (see, e.g., [6]), their discussion
will be brief.

A straightforward method to find the minimum of

time [i, new [i]]

for i ranging from 1 to N in line 2 requires O(N) operations per event. To reduce
the cost, the algorithm instead organizes values

time [i, new [i]]

into an implicit heap structure. Two pointer arrays pht [1 : N] and pth [1 : N] are
maintained so that

time [pht [ml, new [pht [ml]]

is the value which is implicitly located at the m th position of the imaginary heap
array and pth is the inverse map for pht, i.e., pht, i.e.,

pth[pht[m]]=m

for all m. In particular,
time[pht[l], new[pht[l]]]

corresponds to the heap tree root, i.e., the minimum value, so that line 2 can be
simply rewritten as

i, 6 phtC11, current-time+ time[i,, new[i*]].

This method requires updating the heap structure (arrays pht and prh) each time
a value of

time [i, new [i]]

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 265

is changed in other sections of the algorithm. Including this updating, the total cost
of finding the minimum next event time is O(log N) operations per one event.

The main difficulty in the direct method for minimization in lines 4 and 5 is the
need to compute the N- 1 values P,ej in line 4 and the K values Qlqk in line 5. The
opportunity to decrease the O(N + K) complexity burden of these computations
depends on the topology of the evolution space and the uniformity of the compo-
nent and obstacle distribution in this space. In the billiard case, the space is just the

Euclidean plane and there is an independent of N maximum number of balls which

can be located in a bounded vicinity of a given ball. To exploit this boundedness,
the simulation space is divided into sectors and only the components or obstacles
incident to the neighboring sectors are examined. The sector boundaries naturally
become additional “obstacles” in this method and examining boundary crossings
constitutes the method’s overhead. The complexity in this method reduces to 0(1).

Among the available grids used for planar sectorization, the grid of equal squares
is the most convenient. (The ratio of the area to the perimeter of a sector is larger
for the hexagonal grid, though.) Specifically in the case of equal balls, we usually
choose square sides larger than the ball diameter, and for each square we maintain
the membership linked-list of bails whose centers project to this square. When a

square boundary crossing is processed the two lists are updated. Only those P,sj
are computed for which the center of ball ,j belongs to one of the nine sectors
neighboring the one whose member is i,. This small number of P,*, are subject to
minimization in line 4.

5. COMPUTATIONAL EXAMPLES

Two examples of the execution of the algorithm in Fig. 4.1 are reproduced in
Figs. 5.2 and 5.3. Both simulate four-ball billiards on a square pool table. Unlike

real billiards with hard wall boundaries, periodic boundary conditions are assumed
(these conditions are explained in Section 2, see Fig. 2.3). In the example shown in
Fig. 5.2, the table is subdivided into 3 x 3 equal square sectors. Figure 5.2 consists

of three frames, 5.2a, 5.2b, and 5.2~. Each frame shows a snapshot of the simulation
state at a particular current- time with the identification, position, and velocity vec-
tor of each ball at this time. Since the execution state usually does not contain the
positions of all the balls at the same current- time, a picture-producing routine (not
considered in this discussion) accepts t = currerzt-time as an input and interpolates
between the old and the new positions of the ball as shown in Fig. 5.1. Note that
while Fig. 5.1 shows a “general” case, with time [i, old[i]] < t < time [i, new [i]],
the snapshots in Fig. 5.2 and 5.3 have many “degenerated” cases, e.g.,
time [i, o/d [i]] = t. Also note that to simplify the pictures, times are rounded off to

their integer parts while the computer manipulates them with the machine precision
for representing real numbers.

Figure 5.2a shows the positions and velocities of the four balls at
current- time = 0. These quantities are the initial values. Observe that no two balls

266 BORIS D. LUBACHEVSKY

position at time t (the circle center)

FIG. 5.1. Ball 3 at time currenr-time = t (a legend for Fig. 5.2 and 5.3).

overlap. (A method to define such initial positions is discussed in Section 9. Correct
simulation should preserve this property.) As the initialization statement in Fig. 4.1,
reads, the balls are initialized at the same zero time with identical old and new
events. Succeeding the test in line 1, Fig. 4.1 (assuming end- time is sufficiently
large), the algorithm is searching for a ball index i, which yields the minimum to
time [i, new [i]]. As Fig. 5.2a indicates, the algorithm has chosen ball 1. Observe
that in the beginning of simulation, all four new events have the same time so the
other three choices are correct. After switching the senses of old and lzew event
storages for ball 1 in line 3 (here a redundant manipulation), in line 4 the algorithm
tries to select the ball with which ball 1 will collide first. Since time [i, new [i]] = 0
for all i and all P,i> 0, no j satisfies time[.j, new[j]] b P,*,. This means that
the set subject to minimization in line 4 is empty. Hence, P = + cc, and no j, is
selected. In line 5 the algorithm selects the boundary k, which will be reached by
ball 1 first. This boundary happens to be the lower side of the sector to which posi-
tion [l, o/d[l]] belongs and the ball reaches it (in the absence of other balls) at
time Q = 58. In line 6, R and time [1, new [1]] are becoming this time. Tests in line
7 and 9 are succeeding and the rest of cycle 1 is spent on assigning the scheduled
values in lines 8, 10, and 11 to the new coordinates. These new values will come into

FIG. 5.2. (a) Result of cycle 1; current-time = 0; ball 1 has scheduled a boundary crossing for time

58. (b) Result of cycles 2, 3, and 4; current-time = 0; ball 2 has scheduled a boundary crossings for time

124; ball 3 has scheduled a boundary crossing for time 150; ball 4 has scheduled a collision with ball

1 for time 25. (c) Result of cycles 5 and 6; currenl-time = 25; balls 1 and 4 have processed a collision
for time 25; ball 1 has scheduled a boundary crossing for time 94; balls 2 and 4 have scheduled a colli-

sion for time 87.

FIG. 5.3. (a) Result of cycles 1 to 4; current-time = 0; balls 1 and 4 have scheduled a collision for

time 25; balls 2 and 3 have scheduled a collision for time 388. (b) Result of cycle 5; current-time = 25;

ball 1 has processed its collision with ball 4 for time 25; balls I and 2 have scheduled a collision for time

226; ball 2 canceled an earlier scheduled collision with ball 3 for later time 388 and this collision is

turned into an advancement for ball 3. (c) Result of cycle 6; current-time = 25; ball 4 has processed

its collision with ball 1 at time 25; balls 2 and 4 have scheduled a collision for time 87; ball 2 has

canceled an earlier scheduled collision with ball 1 for later time 226 and this collision is turned into an

advancement for ball 1.

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 267

FIGUKF 5.2 FIGCKE 5.3

268 BORIS D. LUBACHEVSKY

effect immediately after crossing the specified boundary. Note that if obstacle is a
demarcation boundary between sectors, then jump is defined as an identical func-
tion: jump (state, obstacle) c’state. The algorithm then takes the snapshot of the
situation (see Fig. 5.2a), after which cycle 2 is started. In the snapshot, ball 1 has
a scheduled event at time 58, while the other three balls still have scheduled events
at time 0 as indicated.

Cycles 2, 3, and 4 are spent scheduling future events with positive times for the
remaining three balls. Update initiators i, are chosen in the following order: ball 2
becomes i, at cycle 2, ball 4 becomes i, at cycle 3, and ball 3 becomes i, at cycle 4.
Figure 5.2b shows the progress made in this scheduling.2 While current-time is still
at 0 because no event with positive time has yet been processed, balls 2 and 3 have
scheduled boundary crossings (case Q < P) and ball 4 has scheduled a collision at
time 25 with ball 1 (case Q > P). When a scheduled collision is indicated on a
picture, not only its time is given but also (in parentheses) the partner index.
Thus, (4) 25 at the new position of ball 1 means that (the center of) ball 1 reaches
this position at time 25 and when it does so, it collides with ball 4. (The dashed line
which is supposed to indicate the future motion of ball 4 is overstricken by the
arrow indicating the velocity.)

The algorithm schedules the collision of balls 1 and 4 at cycle 3 when balls 1 and
2 have already scheduled their next events, boundary crossings at times 58 and 124,
respectively, but ball 3 has not been touched by the algorithm yet. This scheduling
proceeds as follows. First (line 4) ball i, = 4 finds out that the only P,, which is not
larger than time [j, ne~y [j]] is P,, = 25 and P becomes 25. Then (line 5), it is deter-
mined that the nearest boundary crossing occurs at time Q. The smallest of the two,
P and Q, becomes R and also time [4, new [4]] in line 6. Since R is finite and Q
is larger than P, the test in line 7 succeeds but the test in line 9 fails. As a result,
the sequence of statements in lines 8 and 13317 is executed whereby balls 4 and 1
have scheduled a collision at time 25 and the index m, of the third party is remem-
bered. Since there was no partner in the new event previously scheduled by ball 1,
m, becomes A and lines 19 and 20 are skipped.

Time 25 becomes the smallest one in the event-list and the next two cycles, 5 and
6, are spent on processing two events, et’enf[l, new[l]] and eoent [4, new[4]],
both representing the collision of balls 1 and 4 at time 25 but from the “viewpoints”
of two different balls. Processing the collision event by ball 1 generates a new
boundary crossing scheduled for time 94. Processing the collision by ball 4 then
generates another collision scheduled for time 87 with ball 2. The latter collision
preempts the previously scheduled boundary crossing by ball 2 for time 124. The
result of all this processing is shown in Fig. 5.2~. Two velocity vectors are indicated

‘The order 1, 2, 4, 3 of ball selection for the first four cycles is compatible with the algorithm.

However, a persistent reader might ask why this order is not I, 2, 3, 4. Initially, the author suspected an

error in the program when noticing the transposition of 3 and 4. However, no error was found. The

explanation of the transposition is presented in Appendix thereby giving more details of the heup

algorithm.

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 269

for each colliding ball in Fig. 5.2c, before and after the collision. As seen, ball 1 has
collided, not with ball 4, but with its periodic image.

The sequence of snapshots shown in Fig. 5.3 corresponds to the initial condition
of the balls in Fig. 5.2, but without sectoring. During cycles 1 to 4, two collisions
are scheduled: balls 1 and 4 for time 25 and balls 2 and 3 for a distant time 388.
However, after cycle 5, the more distant collision of balls 2 and 3 is preempted by
a collision of balls 1 and 2 for earlier time 226. As a result, ball 3 is left without
a collision; its tentative collision is turned into a no-partner event which will be
convenient to call advuncement. At cycle 6, the preempting collision of balls 1 and
2 for time 226, is itself preempted by a collision of balls 2 and 4 scheduled for even
earlier time 87. As a result, ball 1 has now scheduled an advancement event, the one
previously listed as a collision schedued for time 226.

It seems that events develop faster in the experiments without sectoring shown in
Fig. 5.3 than in those with sectoring in Fig. 5.2. Without sectoring, the balls
schedule their new events with larger horizons and are more “aggressive.” However,
each cycle here takes more computing time. We have continued both experiments
for lo5 collisions, with each pairwise collision being counted twice. Without
sectoring it takes more computing time than with sectoring. (The ratio is 3: 1.)

This is so because to schedule a collision with sectoring, a ball should check nine
neighboring sectors including its own, where it finds at most three other balls.
Without sectoring a ball should check the same three balls and their 3 x 8 periodic
boundary images. Functions interaction-time are formally different in the two cases.
In the case without sectors, the time of a next collision with a bail A is in fact given
not as (2.2) but as the minimum of nine times. One of these represents a collision
with A and is given by (2.2), and the other eight represent collisions with eight
periodic images of A.

6. COMMENTS ON THE IMPLEMENTATION OF THE ALGORITHM

Overlaps. The billiard simulation should be tolerant with respect to a small
overlap of the balls. Figure 5.3 shows “a preemption of a preemptor” phenomenon
when ball 1 has preempted a collision of balls 2 and 3 by scheduling an earlier colli-
sion with ball 2 (Fig. 5.3b), only to be later preempted by ball 4 which schedules an
even earlier collision with ball 2 (Fig. 5.3~). In simulations with thousands of balls,
more involved phenomena of this kind occur. While combined with the roundoff,
they occasionally cause slight overlappings as shown in the following example. Sup-
pose a scheduled collision of balls A and B for time tAB is later preempted by
scheduling a collision of B and C for time tBc< tAB. As a result, the collision event
for A becomes an advancement for time tAB. Suppose that later in the computa-
tions, a collision of C and D scheduled for time t cD < t,, preempts the collision of
B and C. As a result, the collision event for B becomes an advancement for time
f,,. Now the originally scheduled collision of A and B for time I,, needs to be
scheduled again. However, it will be done starting with different initial positions. If

581,94;2-2

270 BORIS D. LUBACHEVSKY

formula (2.2) is used in this scheduling, then c = 0 and t = 0, because max(time 1,
time 2) = tAB. Because of roundoff errors and different computational paths, c may
be slightly negative as if balls A and B were slightly overlapping at time t,, causing
f to be negative. The existing program handles this problem as follows: whenever
interaction-time computes a negative but small by absolute value t in (2.2), the
value of t is replaced by zero.

Advancement events. A preempted two-component interaction is turned into an
advancement for the third party. For example, the preempted collision for time 388
of balls 2 and 3 in Fig. 5.3a is turned for ball 3 into an advancement in Fig. 5.3b.
A more aggressive strategy would perform a full-fledged new event scheduling for
ball 3. Such strategy is less efficient partly because advancements are usually plan-
ned far into the future and have a great chance of being rescheduled. It is not
worthwhile to waste precomputations on them. Only a small fraction of scheduled
advancements “survive” rescheduling. In most simulated cases less than 15 % of all
processed events are advancements. More importantly, the fraction of the processed
advancements does not grow with N. (No theoretical analysis of this statement is
available.)

Delayed update. There exists a subtle inefficiency in the algorithm in Fig. 4.1.
When scheduling an interaction, the algorithm applies advance and jump opera-
tions. If the event is later preempted, these computations are wasted. For example,
when scheduling a collision of balls 2 and 3 for time 388 (Fig. 5.3a), new velocities
are computed, using jump. Later, however, this collision is preempted (Fig. 5.3b).
To correct this inefficiency, the application of advance and jump should be delayed
until the latest possible moment when the scheduled event is being processed.
Figure 6.1 represents a variant of the algorithm which uses this idea.

The encoding of partner is different in the algorithm in Fig. 6.1 compared with
that in Fig. 4.1. Assuming the interaction has not been processed yet, in the new
version we have

partner [i, new [i]]

A for an advancement

= the index of the partner for a two-component interaction

N + the index of the obstacle for a one-component interaction.

After the interaction has been processed by one participant i, but not by the other
j# , partner [j, , new [j,]] becomes negative to indicate that no state update by
the second participant j, is required. This is so done because i, has updated both
states.

This code does not save a great deal in the billiard case because here advance and
jump are much lighter computationally than interaction-time. The update pattern
of array time Cl: N, 1:2] in the algorithm in Fig. 6.1 is the same as in the one in
Fig. 4. I.

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 271

initially cur~nr time t 0 and for i = I .2,...N :

new,[i] t I. old[i] t 2. rime[i,l] t 0, par-me~[i,l] t A,
rfute[i, I] t initial state of component i. ewnf[i,2] t event[i, I]

I. while current-time < etld rime do {
2. c~wrenf-time t ,m~i~~Jrin~c [i. neM.[i]] :

i. t an index which supplies this minimum (i.e.. crrr-rerlr-rime) ;
3 .sturcl t cld~‘ar~r,c(s,ate[i*. o/d[i*]]. fime[iA. o/d[i*]], ~‘me[i*, nrx,[i-I]) ;

4. .;# t [wrner~i*, neM~[i*]] :
s. ifj# = A then srure[is, neHs[i.]] t s/utcl

6. else /” case j, f A “/
7. if .j# > 0 then /” state update required “/
8. if j, > N then /” one-component interaction “/

sfule [ix , neM,[i*]] t jump(sfute I, j#-N)
9. else { /” 1 5 J# I N. two-component interaction “/

IO. store? t ud~vmce(stufe[,j#, n/d[j#]] , time[j#, oWj,ll, timefj,, neM$j#ll) ;
I I. (state [i * , new,[i*]], stufe[j,, new[j,]]) t jump(sfurel, sfure2) ;
12. purmer[j,, nenl[j,]] t -i* ; /” negative partner flags no state update for j# “/

} : /” end two-component interaction close,
end state update required close, end ,j# # A close “/

13. new,[i*] t old[i=] ; old[i*] t Snew[i*] ;
14. P t min P,,, ,

, E /\(I.)
where A(;*) = {.j 1 IljSN, j#i*, fime[j,ncw[j]J 2 P,.,}:

if P < +W then j, t an index which supplies this minimum (i.e., P) ;

15. Q + ,:i;Q,.k , whereB = {k / I<X$K};

if Q < +OO then XX t an index which supplies this minimum (i.e., Q) ;

16. R t min{P, Q} ; rime[i*, neMs[i*]] t R ;

17. if R < +co then
18. if Q < P thenpurmer [i,, newa[i*]] t N + k*

19. else { /” case Q > P “/
!O. time[j*, new[j,]] t R ;
!I. mi t par-fner [j*, new[j*]] ;
!2. partner [ix. nex,[ik]] t j* ;purtner [j,, nebi~[j*]] t i* ;
!3. if m. f A and m* # i* thenpurmer- [m*, neKr[m*]] t A ;

} 1” end Q 2 P close “/
} /” end while loop “/

FIG. 6.1. A version of the simulation algorithm with delayed state update.

Can the third party be identical to the first party? In both versions of the algo-
rithm, the third party update is conditioned to m, # i, (lines 18, 19, and 20 in
Fig. 4.1 and line 23 in Fig. 6. l), which requires the third party to be distinct from
the first party, the initiator of the update. The existing program for billiard balls is
supposed to report an occurrence of m, = i,. This condition has never been reported.
Is identity m, = i, at all possible?

272 BORIS D.LUBACHEVSKY

We can imagine a scenario when equality m, = i, is caused by two components
interacting twice with the second interaction occurring after the first one without
other components or obstacles intervening in between. In the billiard case with
periodic boundary conditions, subsequent collisions of the same pair of balls is
highly improbable for large N. In a different system, such occurrences may be
probable even for large N. That is why the execution is safeguarded with the test

m*#i,.

7. CONSISTENCY OF BASIC OPERATIONS

In an application, the three basic functions of Section 2 are derived from a consis-
tent model: by integrating differential equations of motion of a system, using con-
servation laws, etc. However, the formulation of the algorithm in Section 4 employs
no additional model. Obviously, arbitrarily “bad” basic functions can cause
arbitrarily bizarre behavior even in a “good” algorithm. If we wish to analyze the
algorithm correctness, we should request certain consistency properties in the basic
functions to start. Thus, we introduce the following conditions:

(I) Function interaction-time is commutative with respect to the com-
ponents; i.e., it depends on the unordered pair of components, although in (2.1) the
two participants in the interaction are represented in a particular order.

(II) Similarly, function jump depends only on the unordered pair of
arguments. This means that assignment (new-state2, new-state 1) t jump (state 2,
statel) produces the same new’-statel, and new)-state2 as assignment (2.5).

(III) Function aLit~nce (stafe0, timel, time2) satisfies a two-parametrical
semigroup property with respect to its second and third argument, i.e., for any
t, < t, 6 t, we have advance (advance (s, t,, t2), t,, t3) = advance (s, t,, t3) for any
state s.

(IV) Moreover, there is a proper associativity between advance and interac-
tion- time. Namely, if t = interaction- time (s, , I,,.), and t,<t,<t, then t=interac-

(ion-time (advance (So, t,, t,), t,, ,). Here dot (.) replaces either an appropriate pair
(state, time), if we have a two-component interaction, or an obstacle, if we have a
one-component interaction. For a two-component interaction-time, this property,
coupled with (I), implies a similar associativity with respect to the second set of
arguments or with respect to both sets.

(V) Components are never stuck with each other. Namely, if two components
1 and 2 with state 1 and state2 are interacting, i.e., (2.3) holds, jump is applied and
new-state 1 and nexstate2 are computed according to (2.5), then interaction-time
(new-state 1, time, new-state2, time) > time. Similarly, if a component with state is
interacting with obstacle, i.e. (2.8) holds, jump is applied and new-state is computed
according to (2.7), then interaction-time (new-state, time, obstacle) > time.

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 273

Computationally conditions (I)-(IV) might be “slightly” violated because of the
roundoff. This can cause the simulated history to be dependent upon the processing
order. In the billiard simulation, if processing is organized in two different ways,
usually after a few dozen collisions by each ball, an accumulation of small quan-
titative roundoff errors causes qualitative divergence of the history, which deter-
mines, for example, which ball collides with which. Computational physicists are
aware of such divergence [3] and consider it a variant of physical irreproducibility.
It is worth stating, however, that the second run of exactly the same serial program
starting with the same input data produces exactly the same results.

Now we are going to introduce a condition of a different kind. Consider the set
of components and obstacles Z(t) interacting at a particular time t. If I(t) is non-
empty, we may introduce a binary relation A among the elements in Z(t), assuming
iAj if i is interacting with j at t. Let - be a reflexive, symmetric, and transitive
closure of A, so that * is an equivalence. With this definition, the condition is:

(VI) No equivalence class for the relation - contains more than two
elements.

For example, in the billiard case (VI) prohibits participation of more than two
balls in the same collision, but several disjointed pairwise collisions may take place
at the same time. Figure 7.1 shows such a prohibited triple collision where (2.4)
holds for the pair (i = 1, i = 2) and, separately, for the pair (i = 2, j = 3), but not for
the pair (i= 1, ,j=3), because Ip, -pjI >D.

In Fig. 7.1, the initial condition before collision, including positions of the balls
and their velocities vi, v2, and v~, is mirror symmetrical with respect to the middle
vertical line M. There are two possible orders for processing this collision by the

FIG. 7.1. A triple collision

274 BORISD.LUBACHEVSKY

algorithm. In one order, balls 1 and 2 first collide and obtain new velocities v\” and
u(‘) Then balls 2 and 3 collide and obtain new velocities JJ~) and vy). The initial 2 .
velocity of ball 2 for the second pairwise collision is u$” as if the second collision
occurred later than the first one. The net result of the triple collision is the three
balls moving away from the collision site with velocities u\‘), ui2), and u?‘, which are
not mirror symetrical with respect to M. Hence the coutcome of the triple collision
depends on the order of processing as does the history of the entire simulation.

With infinite precision computations, in the case of chaotically colliding billiard
balls, the probability of violating (VI) is zero. However, in our finite precision
experiments multiple collisions could practically occur and hence (VI) could be
violated. The proof in Section 8 of the correctness of the simulated trajectory should
be understood as an assurance that if the machine precision is infinite, the correct-
ness holds for as long as (VI) holds.

In order to show that the algorithm in Fig. 4.1 reconstructs the trajectory of each
component “correctly” we must know what a “correct” trajectory is. With assump-
tions (I))(VI), starting with a global state at time 0, we can uniquely define the
system state at any positive time using the naive algorithm discussed in the
Introduction. We call the obtained trajectory the correct one.

The algorithm in Fig. 4.1 ignores many events on correct trajectory; our task is
to prove that despite this fact, the trajectory does not change.

8. INVARIANTS AND CORRECTNESS PROOF

The actions of both simulation algorithms in Fig. 4.1 and in Fig. 6.1 can be
summarized as follows: a repeated update of arrays neM> [l:N], old [1: N], and
event [1 :N, 1:2] in such a way that the conditions

max tinze[i, ofd[i]] d ,r~$ time[i, new[i]]
I<i<iV . .

(8.1)

remain invariant. For i= 1, 2, N we have

and

either partner [i, new [i]] = A,

or j= partner [i, new [i]] is an integer in the interval N + 1 < j d N + K, (8.3)

or j is an integer in the interval 1 < j d N and partner [j, new [j]] = i.

Conditions (8.1), (8.2), and (8.3) are trivially satisfied in the beginning of the
simulation. Invariance of condition (8.1) is obvious. As to (8.2) and (8.3), their
invariance can be violated temporarily after a cycle during which one component

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 275

participating in a two-component interaction has been processed but the other has
not been yet. After both components have been processed, and no other two-com-

ponent interaction processing has been started, (8.2) and (8.3) hold. For (8.2), it

follows from lines 4, 5, and 6 in Fig. 4.1 and for (8.3), it follows from symrnetricity
of matrix P,,. This symmetry is an obvious implication of (I) and (II). Observe, that
the invariance of (8.1) and (8.2) requires no consistency conditions (I)-(K).

Invariant (8.2) is the key to understanding the “wasteful” strategy of the data
update in this algorithm. Consider an example. Let N= 3, K = 0. Figure 8.1 shows
trajectories of three billiard balls A, B, and C. We assume that at time I =0 the

balls are positioned on the same horizontal line and we suppose that these are their
old positions, i.e., those stored in array event [., old[.]I.

On the basis of the old events only, C can see two immediate collisions, one with
B when the balls occupy positions 82 and C2 (call it collision B2, C2), and the

other with A, namely collision A2, Cl. C also notes that both A and B have a
scheduled event at time earlier than times of either A2, Cl and B2, C2. Thus, the
set of balls X over which the minimum of P,-, is to be taken according to (8.2) is

empty, and this minimum together with the time of the immediate next interaction
for C is + co.

With the given old events, the following assignment of new times would satisfy
(8.2): both time[A, new[A]] and time[B, new[B]] are equal to the time of colli-
sion Al, Bl, end time[C, new[C]] = + co. With such an assignment, three
inequalities (8.2) turn into equalities.

The assignment time [i, [new[i]] = + cc simply means that C sees to future

FIG. 8.1. Asynchronous collisions of three billiard balls

276 BORISD.LUBACHEVSKY

interaction at this stage of simulation. A more aggressive strategy of precomputa-
tion, in which C would look one more step ahead and would examine possible colli-
sions with A and B based on their velocities after an as yet unprocessed collision
Al, Bl, is possible. However, the proposed algorithm does not use such strategy.
The aggressive strategy might work well for a small number of balls. For many
balls, the aggressive strategy would require a complicated data structure to support
an arbitrary many-step lookahead. In our algorithm, C does not look for more than
one step ahead, thus allowing us to keep the data structure simple.

Invariants (8.1) and (8.2) imply the following useful invariant

To prove the correctness of the algorithm we will show that if

(*) the simulated trajectory is identical to the “correct” one defined in
Section 7, for all t in the interval 0 < t < max, G iG N time [i, o/d [i]], then

(**) after all events with times equal to min, G iG N time [i, new [i]] will
be processed, the extended simulated trajectory will be identical to the “correct”
trajectory for all c in the interval 0 d t d min , < I < N time [i, new [i] 1. . .

This would constitute the inductive step. The basis for the induction is obviously
satisfied since (*) is correct for the program state initialized for t = 0 as described
in Fig. 4.1.

The “correct” trajectory has no interaction on the open interval
max l<i<N time[i,old[i]]<t<min,,i,, . . time [j, new [i]], because if it did, (8.4)
would be violated. Hence the simulated trajectory is identical to the “correct” one
for all t in the interval 0 < t < min 1 G I G N time [i, new [i]]. By (I))(VI), this property
extends to the point t = min, sic N time [i, tzew [i]] and this completes the proof.

9. AN APPLICATION EXAMPLE: A DISK PACKJNG PROBLEM

The following model is simulated in [7]: N points are placed randomly within
an L x L square. Periodic boundary condition apply in both directions. The N
points are assigned random initial velocities and in the absence of subsequent colli-
sions would move with these velocities along straight lines threading through an
infinite sequence of periodic images of the basic square. However, the points also
begin to grow at a common rate into elastic rigid disks, with diameters that are
given by linear function of time D(t) = at, t > 0. As a result, particule collisions
become possible, and increase in frequency as D(t) increases. We permit D(t) to
grow until the system “jams up,” thus obtaining the final packing.

This is a variant of the billiard simulations. Two differences are:

(1) instead of equation 1 p + utl 2 = D* as in Fig. 2.1, equation 1 p + utl 2 = (at)2
has to be solved; the latter is still a quadratic equation with respect to t;

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 277

(2) the normal components of uleW and uTeW (velocities of balls after a colli-

sion, see Fig. 2.2), have to be increased to guarantee that balls do not overlap or
stick to each other. Any additive velocity larger than a/2 would be appropriate.

Energy or momentum conservation are lost with such an additive; as the simula-
tion progresses the system “heats up,” and computational precision may be lost as
ball speeds increase. The existing program once in a while interrupts the simulation
projecting all the ball positions into a particular time value, then scales down
and balances the velocities. (The velocities G;, i = 1, .,., N, of N balls of equal masses
are balanced if C,GiGtivi=O.)

Figures 9.1 and 9.2 show some results of these experiments, in particular the
so-called “rattler” balls which remains unjammed within the walls of jammed
neighbors [7]. In the experiment presented in Fig. 9.2, the large square is sub-

FIG. 9.1. 27 disks packed after 100,000 collisions; disk 24 is a rather.

278 BORIS D.LUBACHEVSKY

FIG. 9.2. 2000 disks packed after 42 x 10’ collisions; dots mark significant rattlers.

divided into 40 x 40 small square sectors (not shown in Fig. 9.2). Rather than
checking a possible next collision with 8 x 1999 candidates, only about 10 disk
candidates for the next collision are checked.

10. COMPARING THE PERFORMANCE OF THIS ALGORITHM WITH

THAT OF OTHER ALGORITHMS

Physicists often study hard-sphere and hard-disk models using computing
experiments. However, with the exception of [3, 11, nobody discusses the details of
the algorithms used, and with the exception of [11, nobody gives performance data.
We read in [11: “The IBM704 calculator handles about 2000 collisions per hour for
100 molecules and about 500 collisions per hour for 500 molecules.”

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 279

Assuming that IBM704 was not slower than 0.02 MFLOP [2], this scales to no
more than 30 collisions per second for a 1 MFLOP machine. The speed of our
calculations is in the range 15&450 pairwise collisions per second (independently
of the number of balls) on VAX8550 which has speed 1 MFLOP. Thus, even the
most pessimistic comparison with [11 gives about an order of magnitude speed-up
of our algorithm.

Simulation of 50,000 to 55,000 committed events in a random configuration of
160 disks is reported in [4]. Let us count one pairwise collision as two committed
events, and one sector boundary crossing or cushion reflection as one committed
event.

The model [4] is different from the one we simulated in that instead of periodic
boundary conditions, rigid elastic “cushions” are employed to guard the cell
boundaries. To compensate for the difference, let us equare an external boundary
crossing in our program with one cushion reflection in [4]. Note that when
scheduling a collision close to the cell boundary, our program considers not only
internal disks as the candidates for collision, as program [4] does, but also their
periodic images. This additional complexity in our program more than compensates
for a possible loss of complexity due to substituting a cushion reflection with a
boundary crossing.

In our measuring run, sector boundary crossings were counted only for 16 sec-
tors specified in series I in [4]. The run was continued until the number reached
52,000 as in [4]. It took 90 s CPU to complete this run.

A similar run in [4] (Series I), took 440 s on one PE and 62 s on 32 PEs, nodes
of a hypercube MARK III. (For 32 and 64 sectors, it took, respectively, 44 and 42 s
in [4].) One node of MARK III is about 60% faster than our VAX 8550. Besides,
our algorithm is a Fortran code while program [4] is written in C-language, both
compiled under UNIX. This yields an additional 10% in favor of our algorithm,
since Fortran is slower than C under a UNIX compilation. Thus our serial algo-
rithm runs about as fast as the parallel Time Warp [4] on a 32-node hypercube.’

11. CONCLUSION: OTHER BILLIARD-LIKE SIMULATIONS AND AN UNSOLVED PROBLEM

A collision of two billiard balls of radii D/2 can be considered as an interaction
of two zero-size particles with potential V(r) = 0 for distances Y> D and

’ After the measuring run was completed, A. P. Wieland informed the author that one sector boundary

crossing is actually counted as two events in [4] rather than as one, as is assumed in this paper. Also,

one pairwise disk collision is counted not as two events as assumed, but as 4 + m events, where variable

m is the number of disks located in the involved sectors at the time of the collision. Suppose only one

sector is involved in each collision, and there are totally 16 sectors (as in Series I in 141). Then m is

about 10. This makes the total count of events generated in [4] during a comparable simulation time

interval several times higher than was assumed in the experiments. This, in turn, makes our program

faster than program [4].

280 BORIS Il. LUBACHEVSKY

V(r) = + a for r < D. More general piece-wise constant potentials can be dealt with
using the same algorithm, e.g., the square-well potential [11,

v= +a, if r<o,

v= v(), if f7,<r<uz

v=o, if c2<r,

where Vo, cr,, and o2 are finite constants. We can imagine two concentric balls: the
“hard core” ball of diameter 0, and a larger “soft shell” ball of diameter CJ*. We
could then have two types of “collisions”: internal, of the hard-cores, and external,
of the soft-shells. Each type has its own jump function.

By the mean of a Monte-Carlo simulation, [9] shows that larger particles move
against the gravitational force if they are placed together with smaller particles in
a vibrating container. The balls of different diameters can be easily handled in our
scheme, if the ball diameter becomes a part of its state. Model [9] can be easily
simulated using direct represetations of particle dynamics, instead of Monte Carlo.

Components lacking homogeneity can be treated in the same way, i.e., by making
the type or the class identification of a component an unchangeable part of its state.
Perhaps, certain granular flow models can be treated in this way. Combat simula-
tions [111 present such inhomogeneity to a large extent, since here components
represent military units of opposing armies, and types of units vary.

Collisions may be generalized to any state changes, including changes that do not
immediately lead to a trajectory change. A typical simulation rule in [111 is: “if
within radius G, a unit detects m units of the same army and n units of the opposing
army, then it takes course of action c(n, m), from the time of detecting this situation
until the time when another rule becomes applicable,” We can represent these rules
by surrounding a zero-sized unit by several circles, each representing a rule. A
counter “inside” the unit state gets an instantaneous increment, when a particular
circle “collides” with another unit. The counter change may or may not trigger a
change in the course of the action. Such mechanisms can be represented within the
discussed framework and simulated using the algorithm in Fig. 4.1.

According to [lo], a variant of the dense packing algorithm can be used in
finding optimal spherical codes. Here the task is to find N points p,, i= 1, N, on
the sphere in the k-dimensional Euclidean space in such a way that

mini,, distance(p,, p,) -+ max.

We would start with a random configuration of N “seed’ points and then grow
“caps” of equal size, each cap having a seed in the center. Caps are prevented from
the overlap by collisions.

Although the algorithm is practically ehicient, no theoretical model which
explains this is available. The model should explain, for example, why the number
of overhead advancement events remains bounded from the above independent
of N.

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 281

cycle I cycle 2 cycle 3 cycle 4

FIG. A.l. Evolution of the heap tree for the example in Fig. 5.2

APPENDIX

The program forms the original heap tree in a natural order: ball 1 at the top,
then balls 2 and 3 at the second level, and then ball 4 attached to ball 2 at the third
level (cycle 1 in Fig. A. 1). The value of the key time [i, new [i]] = 0 for all
i= 1, 2, 3,4. In Fig. 1, a key is indicated in parentheses after the ball number. At
each cycle the ball at the tree root gets processed. Thus, at cycle 1 ball 1 is pro-
cessed. As a result, key time [1, new [l]] becomes 58. This “heavy” key together
with the ball should move down to keep the heap discipline: any parent must be
not “heavier” than its children. There are two possibilities to move key 58 down:
to the left or to the right branch. The program examines the branches from left to
right. Hence ball 1 moves down to the place of ball 4. “Light” balls 2 and 4 move
up to the vacant places. Cycle 2 begins with ball 2 at the root. During cycle 2 ball
a is processed, and key time [Z, new [2]] becomes 124. Now ball 2 must move
down, while balls 1 and 4 move up to the vacant places. At the beginning of cycle
3, ball 4 (not ball 3!) happens to reach the root and therefore gets processed.
During this processing, both time [4, ww [4]] and time [1, new [l]] become 25.
Finally, during cycle 4 ball 3 gets processed. Thus, the balls are processed in the
order 1, 2, 4, 3, not in the order 1, 2, 3,4.

Figures A.2 and A.3 show the fragments of the FORTRAN code dealing with
heap-sort mechanism for N= 2000 balls. The heap structure is initialized at the
beginning of the execution (Fig. A.2). Each time value time [k, neM: [k]] is changed,
subroutine pull(k, 2000) (Fig. A.3) is invoked to adjust the heap.

c initialize heap
do 10 k=1,2000

pWU=k
pha(k)=k

10 continue

FIG. A.2. Heap initialization fragment.

282 BORIS D. LUBACHEVSKY

subroutine pull(k,iend)
c pulling up 1)1 down in the heap-son algorithm
c minimum at the nwt, heavy items go down

camm~n /theap/ time(2000,2),new(Za),pah(2000).pha(20M))
integer pah.pha
integer new
double precision time
double precision aa. aaj. aajl

if((k.ge.l).or.(k.le.iend))goto 2
print *.‘in pull: request for item at k=‘,k
print *,‘endlist=‘,iend

StOp
2 continue

c PULL-UP MITIALIZE
“I =pha(k)
aa=time(nl .new(nl))
jl=k

c SET SON il AND FATHER jl
5 il=jl

jl=j1/2
if(jl.1t.l) goto 8
aaJ=time(pha(jl).new(pha(jl)))

c IF FATHER SMALLER THAN SON THEN PULL-UP IS COMPLETE
if(aaj.le.aa) goto 8

c PULL THE FATHER jl DOWN TO THE VACANT SON PLACE i
ml=pha(jl)
pab(m l)=i 1
pha(il)=ml
got0 5

c PLACE THE GRANDSON UP
8 pha(il)=nl

pah(nl)=il
it******************************

cPULL-DOWN INITIALIZE
9 j=k

n=pha(k)
aa=tlme(n,new(n))

c SET FATHER i AND SON j
10 i=j

j=2*j

c IF NO SONS THEN EXIT
iffj.gt.iend)gotn 30

c LOCATE THE LEFT SON j
aaj=time(pha(i),new(pha(j)))

c IF ONLY ONE SON THEN BYPASS COMPARISON
if(j.eq.iend)goto 20

c COMPARISON: MAKE j TO BE THE SMALLEST SON
aajl=time(pha(j+l),new(pha(j+l)))
if (aaj.le.aajl) goto 20
i=i+ 1
&j=aaj 1

c IF GRANDFATHER SMALLER THAN THESE SONS THEN EXIT

20 if(aa.le.aaj) got0 30
c PULL THE SMALL SON i UP TO THE VACANT FATHER PLACE i

m=pha(j)
pab(m)=i
pha(i)=m
goto 10

c PLACE THE OLD GRANDFATHER DOWN
30 pha(i)=n

pab(n)=i
W”Ill
end

FIG. A.3. Heap update subroutine.

SIMULATING BILLIARDS AND SIMILAR SYSTEMS 283

ACKNOWLEDGMENT

Frank H. Stilhnger has greatly stimulated this work by proposing the disk packing model described

in Section 9. His contribution is presented in companion paper [7].

REFERENCES

1. B. J. ALDER AND T. E. WAINWRIGHT, J. Chem. Phys. 31, No. 2, 459 (1959).
2. C. J. BASHE et al., IBM’s Early Computers (MIT Press, Cambridge, MA, 1986).

3. J. J. ERPENBECK AND W. W. WOOD, in Statistical Mechanics. Part B: Time-Dependent Processes,

edited by J. B. Berne (Plenum, New York, 1977), p. 1.

4. P. HONTALES, B. BECKMAN, et ul., in Proceedings, 1989 SC’S Multiconference, Simulution Series

(Society for Comput. Simulation, San Diego, CA, 1989), Vol. 21, No. 2, p. 3.

5. J. KATZENELSON, SIAM J. Sci. Statist. Comput. 10, No. 4, 787 (1989).

6. D. E. KNUTH, Art of Computer Programming, Vol. 3 Sorting and Searching (Addition, New York.

1973).

7. B. D. LUBACHEVSKY AND F. H. STILLINGER, J. Statist. Phys. 60, No. 5/6, 561 (1990).

8. B. D. LUBACHEVSKY, in Proceedings, 1990 SCS Multiconference, Simulation Series (Society for

Comput. Simulation, San Diego, CA, Vol. 22, No. 2, p. 194.

9. A. ROSATO etul., Phys. Reo. Lett. 58, No. 10, 1038 (1987).

10. W. SMITH, private communication.

11. F. WIELAND AND D. JEFFERSON, in Proceedings, 1989 In/. Cot$ Parallel Processing, Vol. III, edited

by F. Ris, and M. Kogge (Pennsylvania State University Press, University Park/London, 1989),

p. 255.

